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Introduction
What is a SCF (Simple Continued Fraction)?
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What is a NICF (Nearest Integer Continued Fraction) 7
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Whereas the SCF has strictly positive quotients a; € Z™, the NICF permits

negative signs and its quotients converge faster than its SCF counterpart.

Cutting Sequence on the Hyperbolic Plane

As we cut across Farey triangles on the hyperbolic plane H, each defined by

the vertices (7, 755, ), we label each triangle either R or L depending on the

orientation where two sides of the triangle join at a vertex.
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Theorem (Series’s Theorem A)
For an oriented geodesic v with endpoints v, ,~v_:

type R

@ When ~, =[ny;m,...| and v_ = —[0; ng, n_4, ...]|, the geodesic has
cutting sequence ... L" 1R™x[MR™ ..

@ When v, = —[n;;m,...| and v_ =[0; ng, n_1, . ..], the geodesic has
cutting sequence ... R"-1L™xR™[™ ...

where x marks where the geodesic crosses the imaginary axis.

Simple Continued Fraction: Nearest Integer Continued Fraction:
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Geometric Analogue: the Farey Tesselation (Code developed by us)
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Neighbors — and —, where — > —. are connected by a geodesic if and only if ad — bc = 1.
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Cutting Sequence for green (middle) geodesic. .. x[*R[3
Cutting Sequence for red (bottom) geodesic ... x[*R>
Cutting Sequence for blue (top) geodesic ... xL[*RL?. ..
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) continued goal is to show how the cutting sequence acting on the Farey

Farey Continued Fraction and Our Proposed Nearest Gauss Map
The Farey Gauss map is:

Flx) = 1—-1,  ifxe(0,00) where (£/b)) — (+1/1) if Fi(x) € (0, o0)
| -t-2, ifxe[-1,0,) o (—=1/2) if Fi(x) € [~1,0)
1

becomes

A fraction x = ng

.+ L (1/1)(—1/2)™(1/1)(—1/2)"* ...

Similarly, we observed that our NICF algorithm follows a comparable pattern, albeit where we now have
to keep track of an additional array IC = [k, ko, ...]|. The Nearest Gauss Map is then:

L ifxe[l 1 (k,-,+1)ifxe[1 ,1}
T(X) =7 1 . kiJlr% ki_l where (bia ﬁ+1) — : kii% kil
— t ki, itxe (k,-+1v k,-+%) ki, 1) if x € ("f“’ kf+%)
Fample: S = becomes  (1/1)(~1/3)(1/2) =1
xample: = — ecomes — - '
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Working Hypothesis
For a cutting sequence ... xL%yLm 2R™[™R™["  where y is where
crosses x = 2; rounding occurs in Euclid’'s Algorithm each time the cutting

sequence changes from an L to an R.
Each L signifies
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Each R signifies
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(R L) means rounding occurs
R? means no rounding occurs, continue until L.
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Cutting Sequence xL°yRL*RL?

Simple Continued Fraction: Nearest Integer Continued Fraction:
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Future Work & Summary
Caroline Series described an explicit geometrical relationship between the

cutting sequence of a geodesic and the simple continued fractions. Our

triangles in the hyperbolic plane H can be mapped to a new algorithm on the
same fundamental tile (0, 1, 00) or some shift of it, which corresponds to the
Nearest Integer Continued Fractions. This would mark a first in the literature
surrounding Nearest Integer CFs, and provide an explicit relationship between
the cutting sequence of geodesics and the Nearest Integer algorithm.
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