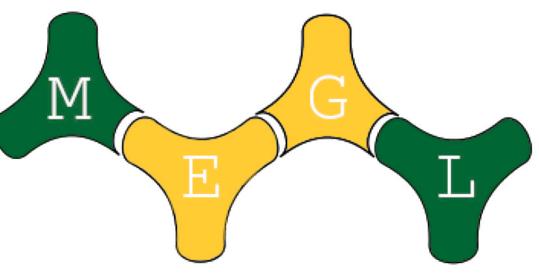


Geometry of Nearest Integer Continued Fractions

Tree Nguyen, Adam Metwally
Advised by: Dr. Claire Merriman and Tim Banks



Mason Experimental Geometry Lab

December 5, Fall 2025

Introduction

What is a SCF (Simple Continued Fraction)?

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \dots}} = [a_0; a_1, a_2, \dots] \quad \text{where } a_i \in \mathbb{Z}^+$$

Quotients

What is a NICF (Nearest Integer Continued Fraction) ?

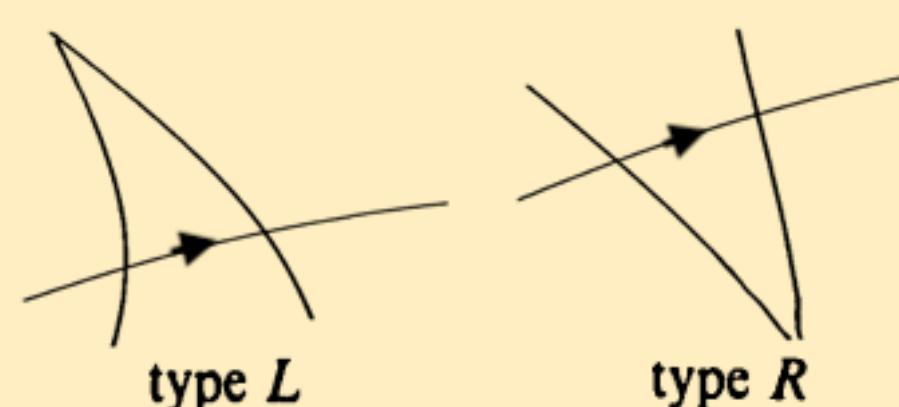
$$a_0 + \cfrac{e_1}{a_1 + \cfrac{e_2}{a_2 + \dots}} = [a_0; (e_1/a_1), (e_2/a_2) \dots] \quad \text{where } e_i \in \{\pm 1\}$$

Quotients permitting negative signs

Whereas the SCF has strictly positive quotients $a_i \in \mathbb{Z}^+$, the NICF permits negative signs and its quotients converge faster than its SCF counterpart.

Cutting Sequence on the Hyperbolic Plane

As we cut across Farey triangles on the hyperbolic plane \mathbb{H} , each defined by the vertices $(\frac{a}{b}, \frac{a+c}{b+d}, \frac{c}{d})$, we label each triangle either R or L depending on the orientation where two sides of the triangle join at a vertex.



Theorem (Series's Theorem A)

For an oriented geodesic γ with endpoints γ_+, γ_- :

- When $\gamma_+ = [n_1; n_2, \dots]$ and $\gamma_- = -[0; n_0, n_{-1}, \dots]$, the geodesic has cutting sequence $\dots L^{n-1} R^{n_0} x L^{n_1} R^{n_2} \dots$
- When $\gamma_+ = -[n_1; n_2, \dots]$ and $\gamma_- = [0; n_0, n_{-1}, \dots]$, the geodesic has cutting sequence $\dots R^{n-1} L^{n_0} x R^{n_1} L^{n_2} \dots$

where x marks where the geodesic crosses the imaginary axis.

Example

Simple Continued Fraction:

$$\frac{8}{3} = \frac{2(3) + 2}{3} = 2 + \frac{2}{3} = 2 + \frac{1}{\frac{3}{2}} = 2 + \frac{1}{1 + \frac{1}{2}}$$

Nearest Integer Continued Fraction:

$$\frac{8}{3} = \frac{3(3) - 1}{3} = 3 - \frac{1}{3}$$

Geometric Analogue: the Farey Tessellation (Code developed by us)

Neighbors $\frac{a}{b}$ and $\frac{c}{d}$, where $\frac{a}{b} > \frac{c}{d}$, are connected by a geodesic if and only if $ad - bc = 1$.

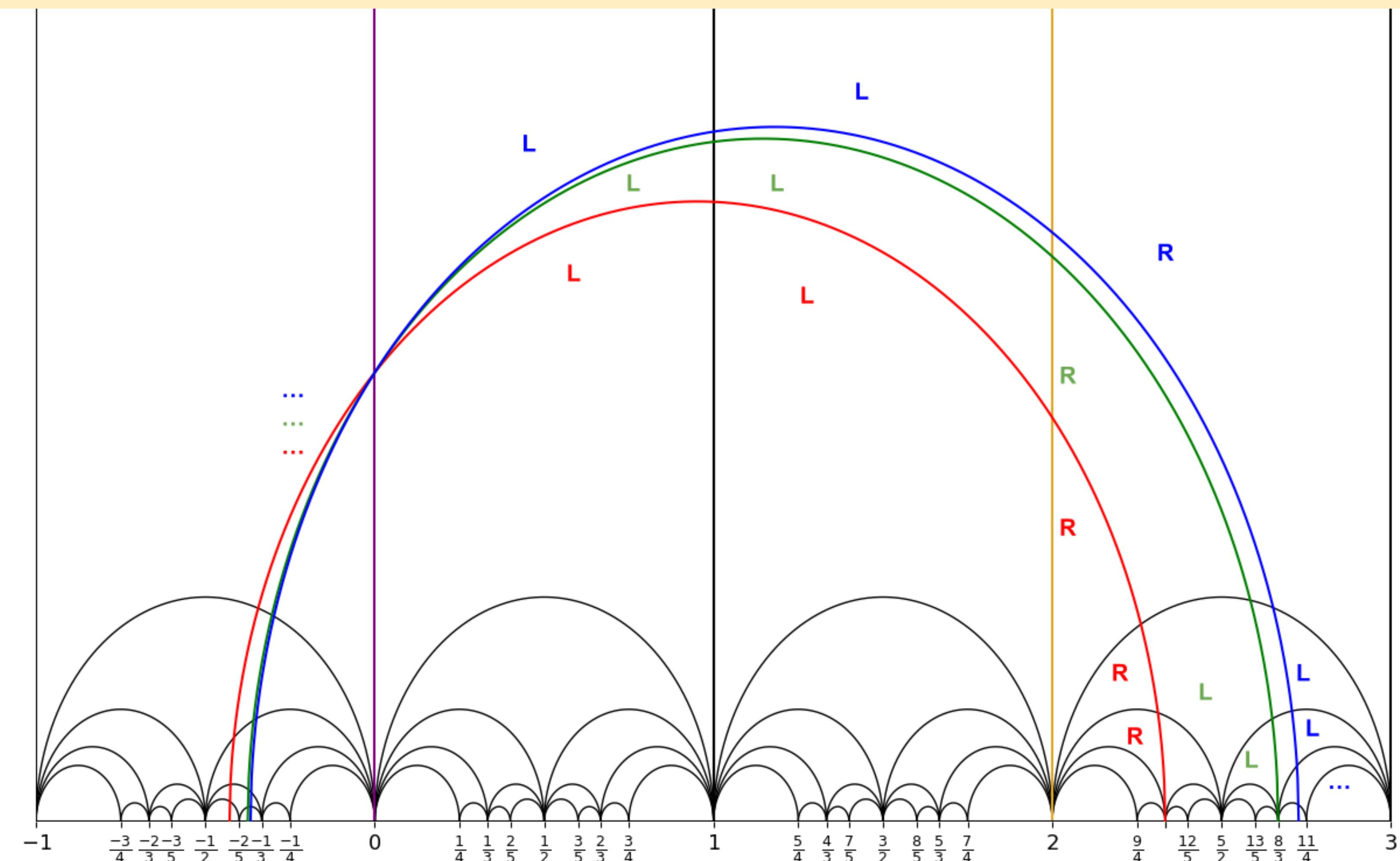


Figure:

Cutting Sequence for green (middle) geodesic $\dots x L^2 R^1 L^3$

Cutting Sequence for red (bottom) geodesic $\dots x L^2 R^3$

Cutting Sequence for blue (top) geodesic $\dots x L^2 R L^2 \dots$

Farey Continued Fraction and Our Proposed Nearest Gauss Map

The Farey Gauss map is:

$$F(x) := \begin{cases} \frac{1}{x} - 1, & \text{if } x \in (0, \infty) \\ -\frac{1}{x} - 2, & \text{if } x \in [-1, 0) \end{cases} \quad \text{where } (f_i/b_i) = \begin{cases} (+1/1) & \text{if } F^i(x) \in (0, \infty) \\ (-1/2) & \text{if } F^i(x) \in [-1, 0) \end{cases}$$

$$\text{A fraction } x = n_0 + \frac{1}{n_1 + \frac{1}{n_2 + \dots}} \text{ becomes } (1/1)(-1/2)^{n_0}(1/1)(-1/2)^{n_1-1} \dots$$

Similarly, we observed that our NICF algorithm follows a comparable pattern, albeit where we now have to keep track of an additional array $\mathcal{K} = [k_1, k_2, \dots]$. The Nearest Gauss Map is then:

$$T(x) := \begin{cases} \frac{1}{x} - k_i, & \text{if } x \in \left[\frac{1}{k_{i+1}}, \frac{1}{k_i} \right] \\ -\frac{1}{x} + k_i, & \text{if } x \in \left(\frac{1}{k_{i+1}}, \frac{1}{k_{i+2}} \right) \end{cases} \quad \text{where } (b_i, f_{i+1}) = \begin{cases} (k_i, +1) & \text{if } x \in \left[\frac{1}{k_{i+1}}, \frac{1}{k_i} \right] \\ (k_i, -1) & \text{if } x \in \left(\frac{1}{k_{i+1}}, \frac{1}{k_{i+2}} \right) \end{cases}$$

$$\text{Example: } \frac{5}{7} = \frac{1}{1 + \frac{1}{2 + \frac{1}{2}}} \text{ becomes } (1/1)(-1/3)(1/2) = 1 - \frac{1}{3 + \frac{1}{2}}.$$

Working Hypothesis

For a cutting sequence $\dots x L^2 y L^{n_1-2} R^{n_2} L^{n_3} R^{n_4} L^{n_5} \dots$ where y is where γ crosses $x = 2$; rounding occurs in Euclid's Algorithm each time the cutting sequence changes from an L to an R .

Each L signifies $n \quad n + \frac{1}{2} \quad n + 1$

Each R signifies $n \quad n + \frac{1}{2} \quad n + 1$

(R L) means rounding occurs

R² means no rounding occurs, continue until L.

Example

Cutting Sequence $x L^2 y R L^2 R L^2$

Simple Continued Fraction:

$$\frac{30}{11} = 2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2}}}}$$

Nearest Integer Continued Fraction:

$$\frac{30}{11} = 3 - \frac{3}{11} = 3 - \frac{1}{\frac{11}{3}} = 3 - \frac{1}{4 - \frac{1}{3}}$$

Future Work & Summary

Caroline Series described an explicit geometrical relationship between the cutting sequence of a geodesic and the simple continued fractions. Our continued goal is to show how the cutting sequence acting on the Farey triangles in the hyperbolic plane \mathbb{H} can be mapped to a new algorithm on the same fundamental tile $(0, 1, \infty)$ or some shift of it, which corresponds to the Nearest Integer Continued Fractions. This would mark a first in the literature surrounding Nearest Integer CFs, and provide an explicit relationship between the cutting sequence of geodesics and the Nearest Integer algorithm.

References

- 1 Dajani, K., & Cor Kraaikamp. (2002). *Ergodic theory of numbers*. Mathematical Association Of America.
- 2 Manfred Einsiedler, & Ward, T. (2010). *Ergodic Theory*. Springer Science & Business Media.
- 3 Merriman, C. (2021). *Geodesic flows and the mother of all continued fractions*. International Journal of Number Theory, 18(04), 931-953.
- 4 Series, C. (1985). *The Modular Surface and Continued Fractions*. Journal of the London Mathematical Society, s2-31(1), 69-80.