
Visualizing Holey Hyperbolic Polyforms

Cooper Roger, Aiden Roger, Adithya Prabha

Mason Experimental Geometry Lab

Project Goals
Explore useful ways to represent large hyperbolic polyforms
both visually and algebraically

Create examples of large hyperbolic polyforms

Determine properties of holey polyforms, especially those
with the mimimum number of tiles for their number of holes

Definitions

{p, q} Tessellation
1 Tessellation - a covering of the plane with tiles
2 p - the number of sides each tile has
3 q - the number of tiles meeting at each vertex

Our project deals only with hyperbolic tessellations, which satisfy
the inequality (p − 2)(q − 2) > 4

Polyform
A figure constructed out of a collection of joined tiles from the
tessellation.

Hole
In simple terms, a hole is part of the tessellation that’s completely
surrounded by polyform. More formally, a hole is a bounded
component of the complement of the polyform in the tessellation.

The Function g{p,q}(h)
g{p,q} : N → N
h 7→ g(h) = g{p,q}(h) = the minimum tiles required for a
polyform in the {p, q} Tessellation to have h holes

Polyforms as Graphs

Figure: A polyform with it’s
dual graph overlaid in black
and the hole graph overlaid in
red

Dual Graph
The graph created by representing each tile of a polyform with a
vertex and connecting those vertices representing adjacent tiles
with edges. Useful for understanding connectivity and cyclic
behaviors in polyforms.

Dual Tessellation
The dual of the {p, q}-Tessellation is the {q, p}-Tessellation. It
is the same as taking the dual graph of the tessellation as a
whole.

Hole Graph
The graph created by making each hole of a polyform a vertex
and creating edges between those holes that touch at their
corners. Useful for understanding the structure of polyforms.

Asymptotic Behavior of g(h)

Lemma: β
(
p − 1− 1

β

)
h ≤ g(h) ≤ (pq − 2p)h

The lower bound can be derived using the first
lemma below, with β being the plus solution to
(p − 2)x2 − (p − 2)(q − 2)x + (q − 2) = 0.

The upper bound can be found by ”stacking” a
simple polyform with 1 hole against itself as
depicted to the right.

Conjecture: limh→∞
g(h)
h = β

(
p − 1− 1

β

)
We conjecture that there exists a finite value for
limh→∞

g(h)
h . We have shown that if it exists, it is no less

than β
(
p − 1− 1

β

)
, where β is described above.[3].

Crystallized Polyforms

Crystallized - A polyform is crystallized when it has h
holes and g(h) tiles.

Let A be a polyform.
1 Lemma 1: If A has n tiles and h holes, then
h ≤ n(p−2)+2−Pp,q

min(n+h)
p , where Pp,q

min(n) is the
minimum perimeter of a polyform with n tiles.

2 Lemma 2: If A has only holes with area 1, minimum
outer perimeter, and the dual graph of A is acyclic
then A is crystallized.

3 Conjecture: If A is crystallized (and q > 3) then A’s
dual graph is acyclic and A has only holes of area 1.

These lemmas are generalized versions of results from
[2].

h {3,7} {4,5} {4,6} {5,4} {5,5} {6,4} {7,3}
1 11 10 13 9 13 11 8
2 18 17 23 15 23 19 14
3 25 24 33 21 33 27 20
4 32 31 43 27
5 39 38 33
Table: Tiles needed for a crystallized polyform with h holes

The values in the table were computed using a modified
version of depth first search on the dual of the
tesselation with various maximum depths. Note the
linear growth in the number of tiles required.

Example Polyforms - Crystals in {4, 5} and {3, 7}

Figure: Crystallized polyforms with up to 5 holes in {4,5} and {3,7} respectively

The case {p, q} = {2k, 3}

g{2k,3}(h) = V{2k,k}
min (h)

where V2k,k
min (h) is the minimum number of vertices a {2k, k}

polyform with h tiles can have.

Conclusions/Future Work
In summary, we have proven many properties of crystallized
hyperbolic polyforms. Furthermore, we have developed our
understanding and intuition of the hyperbolic plane.
Though we are not continuing the project with MEGL, we have
been working on a paper laying out our proofs and progress in
detail which we expect to finish in the coming months. In the
future, this work could be expanded by proving the existence and
value of limh→inf g(h), finding closed formulae for g(h) in more
cases, and improving visual representations of these polyforms to
accommodate larger ones.
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