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Project Background: Terms

Hyperbolic plane: a space which differs from the Euclidean setting in
several ways, the most relevant being that interior angles of regular
polygons are smaller than normal and that the parallel postulate is
different.

{p, q} Tessellation: Tiling of the plane such that at any given vertex,
q regular p−gons meet.

p: the number of sides a tile in the tessellation has.

q: the number of tiles meeting at each vertex.

In all hyperbolic tessellations p and q satisfy the inequality
(p − 2)(q − 2) > 4

Polyform: A plane figure formed from regular polygons in a
tessellation connected edge to edge.

Hole: A bounded component of the complement of the polyform.
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Example Polyforms: {4,5} Tessellation

Full Tessellation Polyform with 2 Holes
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Graphs and Duality

We often use graphs to represent polyforms in order to better visualize and
work with them. We do this in three ways, all of which can be referred to
by the term ”dual”.

Dual Graph: the dual graph of a polyform is constructed by
representing each tile of the polyform as a vertex and creating edges
between adjacent tiles. This is the graph theoretical notion of dual.

Dual Tessellation: The dual of the {p, q}-Tessellation is the
{q, p}-Tessellation. It can be thought of as the result of the dual
graph of the tessellation as a whole.

Hole Graph: The graph created by making each hole of a polyform a
vertex and creating edges between those holes that touch at their
corners.
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Dual Examples

A polyform in {5, 4} with its dual
graph (black) and hole graph (red).

The same polyform represented in
the dual tessellation with holes in

red and tiles in black.
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Project Objectives

Main goal: Find the function gp,q(h) = g(h) for the minimum number of
tiles needed to have a polyform with h holes. Polyforms with h holes and
g(h) tiles are referred to as crystallized.

Sub Goals:

1 Prove various properties of crystallized polyforms, such as the optimal
area of each hole

2 Find binding constants c and C (depending on p and q) such that
ch ≤ g(h) ≤ Ch

3 Create examples of crystallized hyperbolic polyforms for large h.
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The Role of Computation

It’s basically impossible to visually work with hyperbolic polyforms without
a computer.

Images are the only effective way to communicate what your polyform
looks like

After a few layers, tiles are imperceptible in the Poincaré disk or
half-plane models

To get more than a few holes, you need dozens of tiles

Computer tools can help build your intuition.
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How We Used Computers

Making examples

Checking the distinct possible layouts of polyforms to find crystallized
ones and expose patterns

Generating tessellation plots to allow easy checks of if what we’re
thinking makes sense

After a certain size, the only way to to show a polyform is to pan your
perspective through the plane
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Polyform Displayer Program

See https://github.com/CRoger20/megl-polyforms/
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Efficient Structure

Efficiently Structured: A polyform A with n tiles and h holes is efficiently
structured if it satisfies the following conditions:

1 A is acyclic: The dual graph of A is a tree - no cycles.

2 Every hole in A has area of a single tile. Equivalently, each hole is
bounded by exactly p edges.

3 A has minimal outer perimeter. That is, the number of edges it has
that border the unbounded region is as small as possible, or in other
words, A has the smallest perimeter for a polyform with n + h tiles.

Remark: A closed formula for the minimum perimeter of a {p, q} polyform
with m tiles was established by Roldán and Toalá-Enŕıquez in [3]

Pp,q
min(m) =

(
p − 2− 2

β

)
(m) + ϵ
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Crystallized Polyforms

Remember: We say a polyform is crystallized if it has h holes and g(h)
tiles.

We have the following lemmas generalized from [1]. Let A be a polyform
in the {p, q} tessellation.

1 If A has n tiles and h holes, then h ≤ M(n, h) :=
n(p−2)+2−Pp,q

min(n+h)
p .

2 If A is efficiently structured, then A is crystallized.

3 Conjecture: If A is crystallized then A has only holes with area 1.
Furthermore, if it additionally holds that q > 3 then A is acyclic.
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Crystallized Polyform Examples

{3, 7}-Tessellation
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Crystallized Polyform Examples

{4, 5}-Tessellation
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Crystallized Polyform Values

The following values in the table were computed using a modified version
of depth first search on the dual of the tesselation with various maximum
depths.

h {3,7} {4,5} {4,6} {5,4} {5,5} {6,4} {7,3}
1 11 10 13 9 13 11 8

2 18 17 23 15 23 19 14

3 25 24 33 21 33 27 20

4 32 31 43 27

5 39 38 33

Table: Tiles needed for a crystallized polyform
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Bounds on g(h)

Theorem

β
(
p − 1− 1

β

)
h ≤ g(h) ≤ (pq − 2p)h

where β is the plus solution to (p − 2)x2 − (p − 2)(q − 2)x + (q − 2) = 0.

Proof.
1 The lower bound is derived from algebra on M(n, h) with n = g(h)
2 The upper bound can be demonstrated by creating a polyform with

(pq − 2p) tiles and 1 hole, then ”stacking” copies of it to create
polyforms with (pq − 2p)h tiles and h holes.
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Bounds on g(h)

An example of stacking the copies.
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Asymptotic Behavior

We are also interested in the ratio between tiles and holes for large
polyforms. We have shown that if the limit exists,

lim
h→∞

g(h)

h
≥ β

(
p − 1− 1

β

)

This can be derived from the inequality h ≤ M(n, h). We conjecture that
not only does this limit exist, but that in crytallized polyforms h = M(n, h)
and thus

lim
h→∞

g(h)

h
= β

(
p − 1− 1

β

)
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A Formula For g(h)

Theorem

g2k,3(h) = V2k,k
min (h)

where V2k,k
min (h) is the minimum vertices in a {2k, k} polyform with h tiles

Proof.

To get a {2k , 3} polyform with V2k,k
min (h) tiles and h holes:

1 Create a {2k , k} polyform with h tiles and minimal vertices
2 For each tile in the polyform, add a vertex to its center with edges to

every other vertex on the tile, forming the {3, 2k} tessellation
3 Color the graph such that every vertex added in step 2 is red and

every vertex that was already present is black.
4 Take the dual, resulting in the {2k, 3} tessellation

The red vertices correspond to holes of the polyform, and the black
vertices to its tiles. The construction has minimal black vertices and
maximal red ones, so the polyform is crystallized.
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A Formula For g(h)

The dual graph produced in the process (left) and resultant polyform’s
structure (right).
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Conclusions

In summary, we have proven many properties of crystallized hyperbolic
polyforms. Furthermore, we have developed our understanding and
intuition of the hyperbolic plane.

Though we are not continuing the project with MEGL, we have been
working on a paper laying out our proofs and progress in detail which we
expect to finish in the coming months. In the future, this work could be
expanded by proving the existence and value of limh→∞

g(h)
h , finding

closed formulae for g(h) in more cases, and improving visual
representations of these polyforms to accommodate larger ones.
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Roldán as well as our graduate mentor Summer Eldridge for their guidance,
direction, and resources during this project. We would also like to thank
Dr. Peter Kagey for his guidance regarding enumeration of polyforms and
Malin Christersson for their website that generated interactive tessellations
(https://www.malinc.se/noneuclidean/en/poincaretiling.php).

Adithya Prabha, Aiden Roger, Cooper Roger (George Mason University, MEGL, Interns Graduate Mentor Faculty Mentors)Visualizing Holey Hyperbolic Polyforms May 2, 2025 22 / 23

https://www.malinc.se/noneuclidean/en/poincaretiling.php


References
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