
LATEX TikZposter

Parallel Tempering for Stochastic Superoptimization
Mark Dubynskyi, Raghu Guggilam, Safiuddeen Salem, Eric Zipor, mentored by Dr. Michael Jarret and Anthony E. Pizzimenti

Introduction

Background: Stochastic search methods, such
as simulated annealing (SA) and parallel temper-
ing (PT), are powerful tools for minimizing com-
plex functions.

•SA: Gradually reduces exploration ("riskiness")
to converge, but may accept suboptimal solu-
tions to escape local minima.

•PT: Runs parallel searches at different "temper-
atures", swapping states to improve global ex-
ploration.

Adaptation to compiler optimization: We ap-
ply SA and PT to compiler-based logic synthe-
sis, comparing their performance in large search
spaces. Target metric includes: Instruction
count, Execution time, Gate complexity.

STOKE: MCMC-Based Superoptimization

Key Ideas: STOKE is a stochastic superop-
timizer that uses Markov Chain Monte Carlo
(MCMC) to discover highly efficient x86 assem-
bly code. Unlike traditional compilers:

•Treats optimization as a stochastic search
over loop-free code sequences.

•Explores non-obvious transformations missed
by deterministic heuristics.

How It Works: STOKE iteratively:

•Proposes small code changes via MCMC sam-
pling.

•Accepts/rejects changes based on correctness
and performance.

•Escapes local minima, enabling global opti-
mization.

Implementation

Search Space Analysis: Figure 1 visually demonstrates how
compiler-generated code (O0/O3) clusters in dense regions, while
expert optimizations occupy isolated areas. This explains why tra-
ditional compilers struggle to discover optimal solutions.

System Architecture:
STOKE’s pipeline (Fig. 2) operates in four phases:

1.Compile reference implementation

2.Generate test cases

3.Propose and refine rewrites using parallel MCMC

4.Validate and rank solutions

Optimization Method’s Core: STOKE’s search is guided by a
dual-objective cost function

c(R, T ) = eq(R, T ) + λ · perf(R)

where:

•eq verifies correctness (test cases� SMT)

•perf =
∑

latency(i) estimates performance

•MCMC accepts moves with P = min(1, e−β∆c)

Parallel Tempering Enhancement

To improve STOKE’s exploration capability,
we replace simulated annealing with parallel
tempering in the MCMC engine. This addresses
SA’s tendency to become trapped in local min-
ima when optimizing complex assembly code
spaces.

Key advantages of parallel tempering:

•Maintains multiple parallel searches at fixed
temperature levels

•Enables periodic state swaps between temper-
ature regimes

•Allows thorough high-temperature exploration
before lower-temperature refinement

•Particularly effective for x86 assembly’s high-
dimensional search space

Challenges

•Requires fine tuned selection of temperatures
and schedules

•Determining appropriate search length for an
amount of replicas is problem-dependent

Acknowledgements

We want to thank Anton Lukyanenko, Swan
Klein, Kelsi Listman, Tim Banks, and all those
who run and support MEGL.

References

[1] Eric Schkufza, Rahul Sharma, and Alex Aiken.
“Stochastic superoptimization”. In: SIGPLAN (2013),
pp. 305–316. DOI: 10.1145/2499368.2451150.


