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Introduction
Motivated by problems in ecology, we investigate:

1) The survival of populations within a habitat patch and
establish criteria for determining minimum habitat lengths.

2) The “standing wave problem,” where habitat collapse occurs
when the patch becomes too small, using reaction-diffusion
equations and dynamical systems theory.

3) Pulse-like standing waves in an Allee-type growth model
through numerical methods, aiming to determine precise
length thresholds for population persistence.

The Model
In order to model these population dynamics, we use the following
nonlinear RDE (Reaction-Diffusion Equation) in one spatial
dimension:

ut = Duxx + f (u,H(x)), (∗)
with an Allee growth term

f (u,H(x)) = −βu + λH(x)u2 − γu3

where

H(x) =

{
h∗ ∈ R, if |x | ≤ L

2

0, otherwise

with constant diffusion coefficient D > 0 and boundary conditions

lim
x→±∞

u(x , t) = 0.

This model accounts for the limited resources in a large population
density and for under-crowding at lower population density. We
investigate steady-state solutions (where ut = 0) with parameters:

β ≥ 0, γ ≥ 0, λ = 1,

D = 1, h∗ = 1.

Hence, we obtain the following ODEs for being ”inside” and
”outside” the habitat:{

uxx − βu + u2 − γu3 = 0, if |x | ≤ L
2

uxx − βu − γu3 = 0, otherwise

With the use of reduction of order, we obtain two first-order
systems:

Inside habitat: Outside habitat:
ux = v ux = v
vx = βu − λh∗u2 + γu3 vx = βu + γu3

From the inside habitat ODE, we establish a critical length L∗,
where L∗

2 represents the minimum half-length required for
population survival. When L < L∗, the population cannot persist.

Dynamics

Separation of Energy Levels
For all u > 0, the energy levels of the inside and outside
habitat are given as graphs over the u variable which
satisfy:

|vin(u)| < |vout(u)|
where

vin(u) =
√

βu2/2− u3/3 + γu4/4 and

vout(u) =
√
βu2/2 + γu4/4

Energy at Fixed Points
When 0 < γ < 2

9β, the energy values at the fixed points
satisfy:

E (0, 0) = 0, E (u−, 0) < 0, E (u+, 0) > 0

This energy landscape is necessary for the existence of
pulse-type solutions.

(a) Phase space trajectories (b) Phase portrait of minimum length orbit (c) Intersection of inside and outside habitat

Critical Length of Habitat
The habitat collapses when its length falls below a critical value L∗. This length L∗ corresponds to the global minimum of
the L(u0) curve.

Theorem
Consider the the reaction-diffusion equation with u : Ω× [0,∞)→ [0,∞) and parameters β > 0, h∗ = λ = 1, and γ
satisfying 0 < γ < 2

9β. Let L : (0, u+)→ (0,∞) be at least twice differentiable. Then there exists a critical length L∗ > 0
such that if L > L∗, then the habitat has exactly two steady-state pulse solutions; otherwise, there are zero for L < L∗.

Corollary
For any L > L∗, these two steady-state solutions occur at the intersections of the horizontal line at height L with the L(u0)
curve: a stable pulse enabling population persistence and an unstable pulse defining the minimum viable population
threshold.

We computed the critical length of the habitat numerically by using pseudo-arclength continuation. Using this method
allowed us to trace the full length of L, which fails with standard integration methods.

(d) L computed with continuation (e) L computed without continuation

Pseudo-Arclength Continuation Psuedocode
Input: Number of steps n, step size ds, initial point x0
Output: Solution matrix containing continuation curve

Initialize solution matrix with x0 as first column;
for i = 1 to n do
Compute df = ∇F (x0) ; // Gradient of curve
Compute tangent vector at x0;
w = x0 + ds · tangent ; // Predictor step
Construct augmented Jacobian DF with df and tangent
constraint;
x1 = x0 − DF\F ; // Corrector step
Append x1 to solution matrix;
x0← x1;

end
return Solution matrix

(f) Pseudo-arclength continuation visual

Conclusions/Future Work
In future work, we will investigate pulse stability using the Evans
Function or Sturm-Liouville theory, and explore how wave speed
affects critical habitat length and persistence state bifurcation
structure.
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