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Introduction

Our project studies percolation in different spaces. We’re specifically inter-
ested in minimal blocking components at and around the critical probability
threshold , which can tell us a lot about the geometry of a space at criticality.
Finding the critical threshold and minimal components require a variety of algo-
rithms in different dimensions. Specifically, we used random graph techniques
and the max-flow min-cut theorem to generate our spanning surfaces.

Definitions

Percolation describes flow through a permeable material. We simulate per-
colation by randomly adding edges to a d-dimensional lattice graph G ⊂ Zd

to study minimal blocking components or blocking surfaces of G. Starting
with an edgeless lattice graph G,

1. Add an edge of G with probability p.
2. If there is a blocking surface C (that connects “opposite” sides

of G), continue; otherwise, return to the previous step.
3. Delete the youngest edge of C.
4. In the dual graph G∗ of G, find the blocking surface C∗ dual to

C.
5. Find the subgraph of C∗ that crosses G∗ using the fewest num-

ber of edges.

The critical probability pc(G) is the probability at which, by adding edges
with probability pc, a blocking surface is guaranteed to exist somewhere in the
infinite grid. If G = Z2, then pc(G) = 1/2. Our computational experiments gave
us this same probability by dividing the number of edges added when a vertical
crossing is created by the total number of edges in G. In higher dimensions
and other spaces, the critical probability differs, and sometimes is only known
experimentally. Many critical probabilities are still unknown. The figures at
right show the minimal blocking surface of a percolation whose probability p is
approaching pc.

Minimal blocking components or blocking surfaces are sets of edges,
squares, or higher dimensional tiles that cut the entire graph in two. We are
interested in finding the path which achieves this in as little edges, squares,
cubes, etc as possible. Figures 3a and 1b-4b are all examples of minimal
blocking surfaces.

The max-flow min-cut theorem states that in a flow network, the maximum flow
through the network from a source node to a sink node is equal to the combined
capacity of the minimal set of edges you’d have to block to cut the source off
from the sink. We use this theorem to compute minimal blocking surfaces. We
can use a variety of well-known max-flow algorithms, and in doing so we are
also solving for the minimum spanning surface through the system.

Higher Dimensions

We can apply these ideas to m-dimensional cells in an n-dimensional lattice: instead of adding edges randomly, we add
in m-dimensional hypercubes. Our “blocking surface” is then an object of dimension (n −m) separating two opposite
(n−1)-dimensional “faces.” This idea of a blocking surface is less intuitive than the 1-D case, where the surface actually
blocks a 1-D path, but still represents a subset that divides the space into two subspaces. Topologically, these surfaces
are representatives of the (n−m)th homology group.
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Future Work

In the future we would would like to find critical values in higher-dimensional percolation models. Our naïve algorithm’s
efficiency decreases with system complexity, so we turn to topological techniques like persistent homology to find
blocking surfaces. Some models of interest are the permutohedral lattice in four dimensions, two-dimensional per-
colation in the four-dimensional cubical lattice, and two-dimensional percolation in the three-fold cubical torus.
To guide our study, we have a few questions in mind:

1. What is the critical threshold for two-dimensional percolation in the four-torus? If this lines up
with what we already know, can we apply the same techniques to other, more complex systems?

2. How can we measure geometric properties of blocking surfaces?
3. Are these geometric values consistent across different systems? Do they depend on the space,

the percolation model, the system size? Do ideas from classical percolation generalize to higher
dimensions?
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