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Introduction
It is difficult to work with things that are hard to represent.
Hyperbolic polyforms are no exception. In our project, we seek to
find useful ways to represent polyforms with large numbers of
tiles and holes both visually and algebraically, and to find other
properties of polyforms, such as a functions relating the number
of tiles and holes in a polyform.

Definitions

{p, q} Tessellation
1 Tessellation - a covering of the plane with tiles
2 p - the number of sides each tile has
3 q - the number of tiles meeting at each vertex

Our project deals only with hyperbolic tessellations, which satisfy
the equation (p − 2)(q − 2) > 4

Polyform
A figure constructed out of a collection of joined tiles from the
tessellation.
These are colored red in the images.

Hole
In simple terms, a hole is part of the tessellation that’s completely
surrounded by polyform. More formally, a hole is a bounded
component of the complement of the polyform in the tessellation.
These are colored gray in the images.

The Function g(h)
g(h) : N → N
h 7→ the minimum tiles required for a polyform to have h holes

A Graph Representation of Polyforms

We represent polyforms as a graph by modifying the dual of a
sub-graph of the tessellation. Vertices (drawn as circles)

represent tiles and edges show adjacency. Groups of adjacent
vertices are then replaced with a new vertex that is labeled to

show which type of replacement was done, and special edges are
added to show orientation. This allows more information to be
displayed before the exponential growth of hyperbolic space

becomes overwhelming.
In the example above, the two left polyforms are the same, with
the key on the right showing the replacement that was done.

The Growth of g(h) is Linear

As depicted on the right, a polyform with h holes can
always be constructed using h(pq − 2p) tiles by
repeatedly placing a structure that has one hole next to
copies of itself. Thus, while not necessarily optimal,
h(pq − 2p) serves as an upper bound. Additionally,
because each hole in a subset of the {p,q}-tessellation
requires a minimum of p edges to bound it, a polyform
with h holes must have hp edges. Since each tile of the
polyform has exactly p edges, a polyform with h holes
has at least h tiles. Since g(h) has both a linear upper
bound and lower bound, it must have linear growth.

Computed Minimum Tiles for h Holes

h {3,7} {4,5} {4,6} {5,4} {5,5} {6,4} {7,3}
1 11 10 13 9 13 11 8
2 18 17 23 15 23 19 14
3 25 24 33 21 33 27 20
4 32 31 43 27
5 39 38 33

Table: Tiles needed for a polyform with h holes

The values in the table were computed using a
deterministic version of the algorithm depicted to the
right with various values of N. Tiles selected for labeling
were determined by DFS without backtracking.

Though this algorithm is O(n) time, the deterministic
version is O(pn) time, which quickly becomes infeasible.

Example Polyforms

A polyform in {5,4} with 39 tiles and 6 holes

A recolored version of an image from [1].

The same polyform represented as a graph

The left side is the polyform. The right side is a key for
the special square symbol.

Tile Coordinates

We use a coordinate system in which we choose a center tile as
(0,0) and label other tiles based on ”rings” about the center,

with (a,b) being the bth tile in the ath ring.

Conclusions/Future Work
In summary, we have proven a linear growth rate for g(h),
computed the values of g(h) for small h in various tessellations,
and developed representations of polyforms as graphs with
symbols to abstract groups of vertices.
Next semester, we will continue to explore representations of
polyforms (especially as graphs and as elements of groups) and
establish more properties of g(h) such as more precise bounds,
and if possible, a closed formula.
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