
Monte Carlo Algorithms for Quantum Systems
Mark Dubynskyi, Raghavendra Guggilam, Kyle Hess, Anthony Pizzimenti, Michael Jarret-Baume

Mason Experimental Geometry Lab
MEGL Final Symposium, December 2024

Quantum Monte Carlo Introduction

Our group dives deep into the notion of Quantum Monte Carlo
for Quantum Algorithms. Quantum Monte Carlo (QMC) methods
are a class of computational algorithms used to solve quantum
problems where exact solutions are often not feasible due to their
computational complexity.

Simulated Annealing

Simulated annealing is a metaheuristic for finding a good ap-
proximation of the global optimum of a given function. Simulated
annealing mimics the physical process of heating and then slowly
cooling a material, moving the system to neighboring states with
an acceptance probability based on the energy of current state, the
energy of a proposed neighboring state, and a temperature. The
temperature cools periodically, reducing the likelihood of moving
towards higher energy states, thus settling into a minimum-energy
state.

Logic Synthesis/Majority Gate

One of the problems to which we apply parallel tempering is the
Logic Synthesis problem [2]. This problem seeks to reduce the
number of simple gates to recreate higher-level functions. In
particular, we are trying to improve on the state of the art for
synthesis of majority-n gates out of majority-3 gates for odd
values of n. These circuits are represented using ternary graphs.
The energy (or cost) of a state (one logic circuit) is determined
by the number of inputs that result in an incorrect majority. We
say that E (N) = 0 if, and only if,

f (x) = N(x) ∀x ∈ {0, 1}n.
If N(x) is the result of running an input through a network and
f is the boolean value function to imitate, then the cost of a
network is

E (N) =
∑

x∈{0,1}n
f (x)⊕ N(x).

Parallel Tempering

Overview

Parallel tempering is essentially an improved version of
simulated annealing. Parallel tempering, (aka replica ex-
change Monte Carlo), is an advanced Monte Carlo simula-
tion technique used to enhance the sampling efficiency of
a system, especially when the system’s energy landscape
contains many local minima. This method involves run-
ning multiple simultaneous simulations (or “replicas”) of
the same system at different temperatures. Higher tem-
peratures allow the system to overcome energy barriers
and escape local minima, exploring the energy landscape
more broadly.

Pseudocode

We formalized the parallel tempering algorithm by creat-
ing pseudocode based on existing work. Let T be a finite
subset of the real numbers (representing the “energies”
of the replicas), and let h be a stopping condition.

Algorithm 1 Parallel Tempering
1: function ParallelTempering(T , h)
2: W ← empty array of length |T |
3: wi ← dist(V) for 0 ≤ i < |T |
4: wmin ← wi

5: while !h(W) do
6: for i ∈ {0, . . . , |T | − 1} do
7: u ← ProposeUpdate(wi)
8: wi ← u with probability min{1,Cost(wi , t)/Cost(u, t)}
9: if Cost(wi) < Cost(wmin) then
10: wmin ← wi

11: SORT(W)
return wmin

Advantage of PT over SA

Parallel Tempering (PT) is generally considered superior to Simulated Annealing (SA) because while SA relies on a
single temperature schedule, PT exchanges information between multiple replicas at different temperatures, allowing
high-temperature replicas to explore broadly and low-temperature replicas to refine solutions locally.
Key advantages of PT over SA include:

Exponential Efficiency: PT achieves an exponential advantage over SA in escaping local minima and reaching the
global optimum, as it does not solely depend on a gradual cooling process.

Parallel Exploration: By running parallel chains at different temperatures, PT explores diverse regions of the search
space, avoiding the limitations of a single trajectory as in SA.

Enhanced Sampling: PT effectively mixes between energy levels due to swaps between chains, ensuring better
sampling of the solution space and improved convergence.

Test Cases/ Future Work

Code and Software Development: We have been writing code
for Parallel Tempering to be used as a Python module. We are
also working on program verification and optimization

Test Cases: We are developing new test cases such as the Ising
Model simulation and the Protein Folder. Logic Synthesis.

Majority Gate: We hope to improve upon the state of the art
for gates required for logic synthesis of majority-n gates.

Acknowledgments

We would like to give special thanks to Anton Lukyanenko, Swan
Klein, and all those who run and support MEGL.

References

[1] P. Grassberger, “Go with the winners: a general Monte
Carlo strategy,” Computer Physics Communications, vol. 147,
no. 1, pp. 64–70, Aug. 2002, doi: 10.1016/S0010-
4655(02)00205-9.

[2] T. Häner, D. S. Steiger, and H. G. Katzgraber, “Par-
allel Tempering for Logic Synthesis.” arXiv, Nov. 21,
2023. Accessed: Jan. 26, 2024. [Online]. Available:
http://arxiv.org/abs/2311.12394

[3] M. Jarret and B. Lackey, “Substochastic Monte
Carlo Algorithms.” arXiv, Apr. 28, 2017. doi:
10.48550/arXiv.1704.09014.

[4] E. Testa, M. Soeken, L. G. Amaru, W. Haaswijk, and G. De
Micheli, “Mapping Monotone Boolean Functions into Major-
ity,” IEEE Trans. Comput., vol. 68, no. 5, pp. 791–797, May
2019, doi: 10.1109/TC.2018.2881245.

[5] J.-S. Wang and R. H. Swendsen, “Replica Monte Carlo Simu-
lation (Revisited),” Prog. Theor. Phys. Suppl., vol. 157, pp.
317–323, 2005, doi: 10.1143/PTPS.157.317.

