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Quantum Monte Carlo Introduction

Our group dives deep into the notion of Quantum Monte Carlo
for Quantum Algorithms. Quantum Monte Carlo (QMC) methods
are a class of computational algorithms used to solve quantum
problems where exact solutions are often not feasible due to their
computational complexity.

Simulated Annealing

Simulated annealing is a metaheuristic for finding a good ap-
proximation of the global optimum of a given function. Simulated
annealing mimics the physical process of heating and then slowly
cooling a material, moving the system to neighboring states with
an acceptance probability based on the energy of current state, the
energy of a proposed neighboring state, and a temperature. The
temperature cools periodically, reducing the likelihood of moving
towards higher energy states, thus settling into a minimum-energy
state.

Logic Synthesis/Majority Gate

One of the problems to which we apply parallel tempering is the
Logic Synthesis problem [2]. This problem seeks to reduce the
number of simple gates to recreate higher-level functions. In
particular, we are trying to improve on the state of the art for
synthesis of majority-n gates out of majority-3 gates for odd
values of n. These circuits are represented using ternary graphs.
The energy (or cost) of a state (one logic circuit) is determined
by the number of inputs that result in an incorrect majority. We
say that E (N) = 0 if, and only if,

f (x) = N(x) ∀x ∈ {0, 1}n.
If N(x) is the result of running an input through a network and
f is the boolean value function to imitate, then the cost of a
network is

E (N) =
∑

x∈{0,1}n
f (x)⊕ N(x).

Parallel Tempering

Overview

Parallel tempering is essentially an improved version of
simulated annealing. Parallel tempering, (aka replica ex-
change Monte Carlo), is an advanced Monte Carlo simula-
tion technique used to enhance the sampling efficiency of
a system, especially when the system’s energy landscape
contains many local minima. This method involves run-
ning multiple simultaneous simulations (or “replicas”) of
the same system at different temperatures. Higher tem-
peratures allow the system to overcome energy barriers
and escape local minima, exploring the energy landscape
more broadly.

Pseudocode

We formalized the parallel tempering algorithm by creat-
ing pseudocode based on existing work. Let T be a finite
subset of the real numbers (representing the “energies”
of the replicas), and let h be a stopping condition.

Algorithm 1 Parallel Tempering
1: function ParallelTempering(T , h)
2: W ← empty array of length |T |
3: wi ← dist(V) for 0 ≤ i < |T |
4: wmin ← wi

5: while !h(W) do
6: for i ∈ {0, . . . , |T | − 1} do
7: u ← ProposeUpdate(wi)
8: wi ← u with probability min{1,Cost(wi , t)/Cost(u, t)}
9: if Cost(wi) < Cost(wmin) then
10: wmin ← wi

11: SORT(W )
return wmin

Advantage of PT over SA

Parallel Tempering (PT) is generally considered superior to Simulated Annealing (SA) because while SA relies on a
single temperature schedule, PT exchanges information between multiple replicas at different temperatures, allowing
high-temperature replicas to explore broadly and low-temperature replicas to refine solutions locally.
Key advantages of PT over SA include:

Exponential Efficiency: PT achieves an exponential advantage over SA in escaping local minima and reaching the
global optimum, as it does not solely depend on a gradual cooling process.

Parallel Exploration: By running parallel chains at different temperatures, PT explores diverse regions of the search
space, avoiding the limitations of a single trajectory as in SA.

Enhanced Sampling: PT effectively mixes between energy levels due to swaps between chains, ensuring better
sampling of the solution space and improved convergence.

Test Cases/ Future Work

Code and Software Development: We have been writing code
for Parallel Tempering to be used as a Python module. We are
also working on program verification and optimization

Test Cases: We are developing new test cases such as the Ising
Model simulation and the Protein Folder. Logic Synthesis.

Majority Gate: We hope to improve upon the state of the art
for gates required for logic synthesis of majority-n gates.

Acknowledgments

We would like to give special thanks to Anton Lukyanenko, Swan
Klein, and all those who run and support MEGL.

References

[1] P. Grassberger, “Go with the winners: a general Monte
Carlo strategy,” Computer Physics Communications, vol. 147,
no. 1, pp. 64–70, Aug. 2002, doi: 10.1016/S0010-
4655(02)00205-9.
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