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Quantum Monte Carlo Introduction

Our group dives deep into the notion of Quantum Monte Carlo
for Quantum Algorithms. Quantum Monte Carlo (QMC) methods
are a class of computational algorithms used to solve quantum
problems where exact solutions are often not feasible due to their
computational complexity.

Simulated Annealing

Simulated annealing is a metaheuristic for finding a good ap-
proximation of the global optimum of a given function. Simulated
annealing mimics the physical process of heating and then slowly
cooling a material, moving the system to neighboring states with
an acceptance probability based on the energy of current state, the
energy of a proposed neighboring state, and a temperature. The
temperature cools periodically, reducing the likelihood of moving
towards higher energy states, thus settling into a minimum-energy
state.
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Logic Synthesis/Majority Gate

One of the problems to which we apply parallel tempering is the
Logic Synthesis problem [2]. This problem seeks to reduce the
number of simple gates to recreate higher-level functions. In
particular, we are trying to improve on the state of the art for
synthesis of majority-n gates out of majority-3 gates for odd
values of n. These circuits are represented using ternary graphs.
The energy (or cost) of a state (one logic circuit) is determined
by the number of inputs that result in an incorrect majority. We

say that E(N) = 0 if, and only if,
f(x) = N(x) Vxe{0,1}".

If N(x) is the result of running an input through a network and
f is the boolean value function to imitate, then the cost of a

network is
E(N)= ) f(x)® N(x).
x€{0,1}"
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Parallel Tempering

Overview

Parallel tempering is essentially an improved version of
simulated annealing. Parallel tempering, (aka replica ex-
change Monte Carlo), is an advanced Monte Carlo simula-
tion technique used to enhance the sampling efficiency of
a system, especially when the system’s energy landscape
contains many local minima. This method involves run-
ning multiple simultaneous simulations (or “replicas”) of
the same system at different temperatures. Higher tem-
peratures allow the system to overcome energy barriers
and escape local minima, exploring the energy landscape
more broadly.
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Advantage of PT over SA

Pseudocode

We formalized the parallel tempering algorithm by creat-
ing pseudocode based on existing work. Let T be a finite
subset of the real numbers (representing the “energies”
of the replicas), and let h be a stopping condition.

Algorithm 1 Parallel Tempering

1: function PARALLELTEMPERING( T, h)

2: W <— empty array of length | T|

w; < dist(V) for 0 < 7 < |T|

Wmin <— W,

while 'h(W) do

for i€ {0,...,|T|—1} do

u < PROPOSEUPDATE(w,)
w; < u with probability min{1, CosT(w;, t)/
if CosT(w;) < CoST(wp,) then

10: Wmin <— W;

11: SORT (W)
return w,,;,
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Parallel Tempering (PT) is generally considered superior to Simulated Annealing (SA) because while SA relies on a
single temperature schedule, PT exchanges information between multiple replicas at different temperatures, allowing
high-temperature replicas to explore broadly and low-temperature replicas to refine solutions locally.

Key advantages of PT over SA include:

Exponential Efficiency: PT achieves an exponential advantage over SA in escaping local minima and reaching the
global optimum, as it does not solely depend on a gradual cooling process.

Parallel Exploration: By running parallel chains at different temperatures, PT explores diverse regions of the search
space, avoiding the limitations of a single trajectory as in SA.

Enhanced Sampling: PT effectively mixes between energy levels due to swaps between chains, ensuring better

sampling of the solution space and improved convergence.
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Test Cases/ Future Work

Code and Software Development: We have been writing code
for Parallel Tempering to be used as a Python module. We are
also working on program verification and optimization

Test Cases: We are developing new test cases such as the Ising
Model simulation and the Protein Folder. Logic Synthesis.

Majority Gate: We hope to improve upon the state of the art
for gates required for logic synthesis of majority-n gates.
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