
Egyptian Fraction Decomposition: Rational Functions as Sums of Polynomial Reciprocals

Tim Banks, Dr. Neil Epstein, Kalkedan Malefia, and Kaitlyn Sullivan

Mason Experimental Geometry Lab

December 6, 2024

Introduction
The Ancient Egyptians expressed proper fractions as sums of
unit fractions with a numerator, 1, and a positive integer as its
denominator. Our project explores the application of this
unique design on “proper” polynomial fraction, f

g ,where

deg(f ) ≤ deg(g). However, “improper” polynomial fraction
where the deg(f ) > deg(g) can not be written Egyptianally.
Although Egyptian fractions have been around for millennia,
we were inspired by algorithms by mathematicians such as
Pierce, Engel, Fibonacci, and Golomb to express rational
numbers as Egyptian fractions.

The Pierce and Engel decompositions express fractions
as a sum (or alternating sum) of reciprocals where the
denominators are multiples of the original denominator.

Fibonacci’s Greedy Algorithm iteratively subtracts
the largest unit fraction from the given fraction until the
remainder itself becomes a unit fraction.

Golomb’s Algorithm repeats the process of taking the
multiplicative inverse of the denominator modulo the
numerator, continuing until only a unit fraction remains.

These algorithms form the foundation for extending Egyptian
fraction decomposition to rational functions. By imitating
these three methods–Pierce-Engel, Fibonacci, and Golomb– on
polynomial fractions, we were able to analyze the limitations
and patterns of each algorithm.

Early History
Egyptian fraction notation was developed in the Middle
Kingdom of Egypt around 2000 BCE, appearing in many early
texts but wasn’t improved until the time of the Rhind and
Moscow Mathematical Papyri, around 1800 BCE. A hieroglyph
character that looks like a mouth or oval was placed above a
number to indicate the reciprocal of that number. They also
used special symbols to represent common fractions such as 2

3.

Our Process
We began by analyzing the Pierce-Engel algorithm for rational
functions as documented by Dr. Epstein. This inspired us to
implement these algorithms using computer programs like
Mathematica to visualize how rational functions could be
expressed as sums of polynomial reciprocals. We developed
Mathematica notebooks to evaluate the Pierce-Engel method,
Fibonacci-style algorithms, and Golomb-style algorithms.
These tools expedited our experimentation, enabling us to
focus on establishing bounds on the number of terms and
degrees in the decompositions while comparing the
effectiveness and elegance of the decompositions.

Theorem (Pierce-Engel Style (2))
Let f , g ∈ k[x ] where k is a field. Assume that deg(f ) ≤ deg(g) then
there is a uniquely determined list of nonzero polynomials h0, h1, ..., hn such
that n ≤ deg(f ), 0 < deg(hi) < deg(hi+1) whenever 0 ≤ i < n, and

f

g
=

1

h0
− 1

h0h1
+ ... +

(−1)n

h0h1...hn

Remarks
This algorithm utilizes the Division Algorithm for Polynomials. Given
g = f h0 + r0, we can derive the following, 1

h0
= f

g +
r0
gh0

⇔ f
g = 1

h0
− 1

h0
(r0g )

and 1
h1
= r0

g +
r1
gh1

⇔ r0
g = 1

h1
− 1

h1
(r1g ). As this algorithm continues, the results

take the form (−1)i

h0h1...hi−1
(ri−1

g ).
Where the degree of each remainder is
deg(f ) > deg(r0) > deg(r1) > ... > deg(rn). Additionally, Pierce-Engel
decomposition can be written as an ascending continued fraction.

Example
In the following output code of polynomial decomposition for f

g , the

h0, h1, ...hn take the form written above and n ≤ deg(f ).

Conclusion and Future Work
In creating computer scripts for the Pierce-Engel, Fibonacci, and Golomb style algorithms, future computations and the analysis
process has become much easier. This fulfills the goal for this semester that we decided on in early fall: to make experimenting
and analyzing the behavior of these algorithms faster. A complex hand computation has been reduced to seconds using the code
we have developed this semester. This makes the work of potential future semesters much more streamlined, allowing all time to
be dedicated to analysis rather than spending time on long hand computations.
For the future, the main focus would be determining minimum and maximum degree bounds for the denominators as well as
bounds on the minimum and maximum number of terms for each algorithm. So far, we have found in the Pierce-Engel and
Fibonacci algorithm that as the number of terms increases, so does the maximum degree of the denominators. For Fibonacci in
particular, the degree increases greatly as the terms get large, creating very large degrees in the polynomial reciprocals. In
comparison, the Golomb algorithms has a bound on the maximum degree. The maximum degree of a denominator polynomial is
≤ 2 deg(g)− 1 and decreases each time, creating a very efficient algorithm.
It can be concluded that the most efficient algorithm is the Golomb style algorithm due to it’s bound on degrees and the fact
that the degrees decrease with each iteration. In comparison, the Pierce-Engel and Fibonacci terms increase with each iteration,
with the Fibonacci increasing greatly as the number of terms increases. For all algorithms, the number of summands is at most
equal to deg(f ) + 1.
In future semesters, exploration of more algorithms would further expand knowledge on efficient methods of rational function
decomposition, allowing for more observation on numbers of terms, degree bounds, and other behaviors of algorithms. Work will
be continued with Golomb’s algorithm as we write a paper on our findings regarding the degree bound and the code that we
have completed this semester.

Theorem (Fibonacci Style)
Let f , g ∈ k[x ], where k is a field, of degrees d , e respectively, where
d ≤ e. Then there is a list of polynomials h0, h1, ..., hn such that n ≤ d,
deg(h0) = e − d, deg(hi) ≥ i + 2(e − d) +

∑i−1
j=1 deg(hj) whenever

1 ≤ i ≤ n, and
f

g
=

1

h0
− 1

h1
+ ... +

(−1)n

hn
.

Remarks
This algorithm utilizes the Division Algorithm for Polynomials.
Given g = fh0 + r0 then

f
g = 1

h0
− r0

gh0
⇔ r0

h0g
= 1

h0
− r1

gh0h1
As this algorithm

continues, the results take the form ri
gh0...hi

= 1
hi+1

− ri+1

gh0...hi+1
where,

deg(f ) > deg(r0) > deg(r1) > · · · > deg(rn). Additionally, the resulting
decomposition becomes increasingly complex and burdensome. It grows
both in size and intricacy, making it less elegant and more challenging to
work with compared to other methods.

Example
In the following output code of polynomial decomposition for f

g , notice the
degrees of polynomials h0, h1, ..., hn grow more rapidly. Furthermore, the
algorithm produces large numbers resulting in a complex decomposition
that lacks efficiency.

Theorem (Golomb Style Algorithm for Polynomials)
Let f , g ∈ k[x ], where k is a field, of degrees d , e respectively, where
d ≤ e. Suppose gcd(f , g) = 1, then there exist polynomials g1, · · · , gn
where n ≤ d, deg(g) > deg(g1) > · · · > deg(gn), and a nonzero c ∈ k,
such that

f

g
=

1

gg1
+

1

g1g2
+ · · · + 1

gn−1gn
+

1

cgn
In particular, there are at most d + 1 terms, and all denominators have
degree ≤ 2e − 1

Remarks
This involves solving equations with deg(fi+1) < deg(fi) and
deg(gi+1) < deg(gi) of the form

gi+1fi = fi+1gi + 1 ⇔ fi
gi

=
fi+1
gi+1

+
1

gigi+1
This is possible because of the Sylvester Resultant.
In addition to the bound on number of terms and the bound on maximum
denominator polynomial degree, the Golomb algorithm also produces
“friendlier”, smaller coefficient values in comparison to the other
algorithms.

Example
In the following code outputs of polynomial decompositions for f

g , notice the maximum

degree of the denominators is 2e - 1. Notice the difference in terms when the degree of f

decreases.

Now notice the comparative simplicity of this decomposition result to the results of other

algorithms.

Acknowledgments
Special thanks to Dr. Neil Epstein for being the faculty
member overseeing the research project, as well as our
graduate mentor Tim Banks.

References
1 Crawford, T. (n.d.). Egyptian fractions. Tom Rocks
Math. https://tomrocksmaths.com/wp-
content/uploads/2023/08/m-s-egyptian-fractions.pdf

2 Epstein, N. (2024). Rational Functions as Sums of
Reciprocals of Polynomials. The American Mathematical
Monthly, 131(9), 794–801.
https://doi.org/10.1080/00029890.2024.2379749

3 Solomon W. Golomb. (1962) An Algebraic Algorithm for
the Representation Problems of the Ahmes Papyrus, The
American Mathematical Monthly, 69(8), pp. 785-786.


