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SL2C Character Variety: The Recipe

1 A finitely presentable group Γ = ⟨γ1, . . . , γm|R1, . . . ,Rl⟩

2 The collection of group homomorphisms Hom(Γ,SL2C).

3 The collection Hom(Γ,SL2C)/ ∼ of conjugacy classes with closed
orbit.

Lemma

The space Hom(Γ,SL2C) is in bijective correspondence with the collection
{(A1, . . . ,Am) ∈ SL2Cm|Ri (A1, . . . ,Am)− I2 = 0, for all 1 ≤ i ≤ l}.
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Two-generator one-relation groups

For this project, we are concerned mainly with two-generator one-relation
groups. That is, Γ = ⟨a, b|R⟩. For this, we have the following alternative
construction.

Lemma

The SL2C character variety of Γ = ⟨a, b|R⟩ is in bijective correspondence
with the collection of maximum ideals of the coordinate ring
C[x , y , z ]/⟨tr(R)− 2, tr(AR)− tr(A), tr(BR)− tr(B)⟩ where x = tr(A),
y = tr(B) and z = tr(AB).
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A Simple Example

Example

Let Γ = Z2. Then the SL2C character variety of Γ is given by the
collection of matrices {A ∈ SL2C|A2 = I2}/ ∼. The only such matrices
are ±I2. Then through the characteristic equation, these matrices are in
bijection with their trace, and so we have that the character variety is
{−2, 2} by the first lemma.

Example

Let Γ = Z2. Then the SL2C character variety of Γ is the collection of
maximal ideals of the coordinate ring C[x ]/⟨x2 − 4⟩. So the character
variety is, by the previous lemma, {−2, 2} as expected.
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A Neat Example: Z⊕ Z

Example

Let Γ = ⟨a, b|aba−1b−1⟩ = Z⊕ Z. The corresponding space
Hom(Γ,SL2C) is in bijective correspondence with {(A,B)|AB = BA} with
closed orbits. It is known that such matrices are simulatneously upper
triagonalizable, so up to conjugacy, this collection is in bijective

correspondence with the collection of pairs

((
λ 0
0 1

λ

)
,

(
λ 0
0 1

λ

))
.

This suggests the correspondence((
λ 0
0 1

λ

)
,

(
λ 0
0 1

λ

))
7→ (λ, 1

λ) ∈ C× × C×

We only need now to identitfy (λ, 1
λ) ∼ ( 1λ , λ). This yields the character

variety as C× × C×/Z2.

Dylan Evans, Nicholas Lear (George Mason University, MEGL)Exploring the Grothendieck Group via Character Varieties Fall 2024 5 / 19



Semester Results

1 Complete classification of character varieties of cyclic groups.

2 Complete classification of character varieties of the form Γ = ⟨a, b|an⟩

3 Complete classification of character varieties on 2-generator
one-relation groups up to word length 3.
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Character Variety of Zn

Let Γ = Zn. We answer the following questions.

1 Is there an explicit formula for the polynomials defining the character
variety?

2 How many points are in the character variety?
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Polynomials Defining Character Variety for Zn

We know that the polynomials generating the character variety for Zn are
given recursively by

1 f1(t) = t

2 f2(t) = t2 − 2

3 fn(t) = tfn−1(t)− fn−2(t)

This is fine, but computationally expensive for large n.
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Explicit Formula for fn(t)

Figure: First ten polynomials of fn(t)
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Explicit Formula for fn(t)

Figure: First ten polynomials of fn(t) next to first ten Chebyshev Polynomials

Where here Tn(t) represents the nth Chebyshev polynomial of the first
kind.
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Explicit Formula

Lemma

Let Γ = Zn. Then the SL2C character variety of Zn is defined by the

polynomial fn(t) =

⌊ n
2
⌋∑

k=1

(−1)k [
(n−k

k

)
+
(n−k−1

n−2k

)
]tn−2k

Observation: The nth Chebyshev polynomial of the first kind is given

explicitly by Tn(t) =

⌊ n
2
⌋∑

k=1

(−1)k [
(n−k

k

)
+
(n−k−1

n−2k

)
]2n−2k−1tn−2k
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Size of Character Variety of Zn

Lemma

Let Γ = Zn. Then the SL2C character variety of Zn is in bijective
correspondence with the collection {tr(A)|A ∈ SL2C,An = 1}

Corollary

The number of points in the SL2C character variety of Zn is
s(n) = ⌊n2⌋+ 1.

Corollary

The SL2C character variety of Zn is given by {2 cos(2πkn )|k ∈ Z}.
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Proof that s(n) = ⌊n2⌋+ 1

Figure: Roots of Unity

Proof.

Recall that Hom(Zn,SL2C)/ ∼ ∼= {A ∈ SL2C|An = 1}/ ∼∼={(
e i

2πk
n 0

0 e−i 2πk
n

)∣∣∣∣k ∈ Z

}
/ ∼. These are precisely the n roots of

unity. So s(n) is just the number of distinct traces of matrices in this
collection. Hence s(n) = ⌊n2⌋+ 1.
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Two Generators, Cyclic Relation

We now study the case where Γ = ⟨a, b|an⟩.
We have three variables that define our polynomials tr(A), tr(B) and
tr(AB).
And we get the trace relations defining the character variety,

1 tr(An)− tr(I ) = 0

2 tr(An+1)− tr(A) = 0

3 tr(BAn)− tr(B) = 0
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Polynomials Defining the Γ = ⟨a, b|an⟩ Character Variety

Let gn(x , y , z) = tr(BAn)− tr(BA). Then using the trace relations and
defining tr(A) = x , tr(B) = y , and tr(AB) = z we obtain the following
functions which generate our character varieties

1 g1(x , y , z) = 0

2 g2(x , y , z) = xy − z − y

3 gn(x , y , z) = xgn−1(x , y , z)− gn−2(x , y , z)
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Character Variety of ⟨a, b|an⟩

Lemma

Let Γ = ⟨a, b|an⟩, then the SL2C character variety of Γ is of the form

C ⊔
N⊔
i=1

C2 where N = ⌊n2⌋+ 1 when n is odd, and C ⊔C ⊔
N⊔
i=1

C2 where

N = ⌊n2⌋+ 1 when n is even.

Intuition: A generates a cyclic group of order n and is of fixed values
while B is always able to act freely and acts separately from AB when A is
not the identity.

Dylan Evans, Nicholas Lear (George Mason University, MEGL)Exploring the Grothendieck Group via Character Varieties Fall 2024 16 / 19



Explicit Example

Example

Let Γ = ⟨a, b|a3⟩. Then the polynomials defining the character variety are
1 f1(x , y , z) = x3 − 3x − 2
2 f2(x , y , z) = x4 − 4x2 − x + 2
3 f3(x , y , z) = zx2 − z − xy − y

The common zeros of these are (−1, y , z) and (2, y , y) for any y , z ∈ C.
Thus the character variety is in bijective correspondence with C ⊔ C2.
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Classification of Low Complexity Groups
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Future Project Goals

1 Continue classifying character varieties of finite two generator groups
in SL2C.

2 Begin classifying the character varieties of finitely presentable three
generator groups in SL2C or two generator groups with two words.
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