Exploring the Grothendieck Group via Character Varieties

Dylan Evans, Nicholas Lear

George Mason University, MEGL

Fall 2024

- A finitely presentable group $\Gamma = \langle \gamma_1, \ldots, \gamma_m | R_1, \ldots, R_l \rangle$
- **2** The collection of group homomorphisms $Hom(\Gamma, SL_2\mathbb{C})$.

The space $Hom(\Gamma, SL_2\mathbb{C})$ is in bijective correspondence with the collection $\{(A_1, \ldots, A_m) \in SL_2\mathbb{C}^m | R_i(A_1, \ldots, A_m) - I_2 = 0, \text{ for all } 1 \le i \le I\}.$

For this project, we are concerned mainly with two-generator one-relation groups. That is, $\Gamma = \langle a, b | R \rangle$. For this, we have the following alternative construction.

Lemma

The $SL_2\mathbb{C}$ character variety of $\Gamma = \langle a, b | R \rangle$ is in bijective correspondence with the collection of maximum ideals of the coordinate ring $\mathbb{C}[x, y, z]/\langle \operatorname{tr}(R) - 2, \operatorname{tr}(AR) - \operatorname{tr}(A), \operatorname{tr}(BR) - \operatorname{tr}(B) \rangle$ where $x = \operatorname{tr}(A)$, $y = \operatorname{tr}(B)$ and $z = \operatorname{tr}(AB)$.

A Simple Example

Example

Let $\Gamma = \mathbb{Z}_2$. Then the $SL_2\mathbb{C}$ character variety of Γ is given by the collection of matrices $\{A \in SL_2\mathbb{C} | A^2 = I_2\}/\sim$. The only such matrices are $\pm I_2$. Then through the characteristic equation, these matrices are in bijection with their trace, and so we have that the character variety is $\{-2, 2\}$ by the first lemma.

Example

Let $\Gamma = \mathbb{Z}_2$. Then the SL₂ \mathbb{C} character variety of Γ is the collection of maximal ideals of the coordinate ring $\mathbb{C}[x]/\langle x^2 - 4 \rangle$. So the character variety is, by the previous lemma, $\{-2, 2\}$ as expected.

Example

Let $\Gamma = \langle a, b | aba^{-1}b^{-1} \rangle = \mathbb{Z} \oplus \mathbb{Z}$. The corresponding space Hom(Γ , SL₂ \mathbb{C}) is in bijective correspondence with {(A, B)|AB = BA} with closed orbits. It is known that such matrices are simulatneously upper triagonalizable, so up to conjugacy, this collection is in bijective correspondence with the collection of pairs $\left(\begin{pmatrix} \lambda & 0 \\ 0 & \frac{1}{2} \end{pmatrix}, \begin{pmatrix} \lambda & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \right)$. This suggests the correspondence $\left(\left(egin{array}{cc} \lambda & 0 \\ 0 & rac{1}{\lambda} \end{array}
ight), \left(egin{array}{cc} \lambda & 0 \\ 0 & rac{1}{\lambda} \end{array}
ight)
ight) \mapsto (\lambda, rac{1}{\lambda}) \in \mathbb{C}^{ imes} imes \mathbb{C}^{ imes}$ We only need now to identity $(\lambda, \frac{1}{\lambda}) \sim (\frac{1}{\lambda}, \lambda)$. This yields the character variety as $\mathbb{C}^{\times} \times \mathbb{C}^{\times} / \mathbb{Z}_2$.

イロト イヨト イヨト ・

- Complete classification of character varieties of cyclic groups.
- **2** Complete classification of character varieties of the form $\Gamma = \langle a, b | a^n \rangle$
- Complete classification of character varieties on 2-generator one-relation groups up to word length 3.

- Let $\Gamma = \mathbb{Z}_n$. We answer the following questions.
 - Is there an explicit formula for the polynomials defining the character variety?
 - O How many points are in the character variety?

We know that the polynomials generating the character variety for \mathbb{Z}_n are given recursively by

1
$$f_1(t) = t$$

2
$$f_2(t) = t^2 - 2$$

3
$$f_n(t) = tf_{n-1}(t) - f_{n-2}(t)$$

This is fine, but computationally expensive for large n.

Explicit Formula for $f_n(t)$

f(t)
t
t ² – 2
t ³ – 3 t
$t^4 - 4 t^2 + 2$
t^{5} – 5 t^{3} + 5 t
t^{6} – 6 t^{4} + 9 t^{2} – 2
$t^7 - 7 t^5 + 14 t^3 - 7 t$
t^{8} – 8 t^{6} + 20 t^{4} – 16 t^{2} + 2
$t^9 - 9 t^7 + 27 t^5 - 30 t^3 + 9 t$
t^{10} – 10 t^8 + 35 t^6 – 50 t^4 + 25 t^2 – 2

Figure: First ten polynomials of $f_n(t)$

イロト イポト イヨト イヨト

æ

Explicit Formula for $f_n(t)$

f_n(t)	T_n(t)
t	t
t ² – 2	2 t ² - 1
t ³ – 3 t	4 t ³ - 3 t
$t^4 - 4 t^2 + 2$	$8t^4 - 8t^2 + 1$
t^{5} – 5 t^{3} + 5 t	16 t ⁵ - 20 t ³ + 5 t
$t^6 - 6 t^4 + 9 t^2 - 2$	32 t^6 - 48 t^4 + 18 t^2 - 1
t ⁷ – 7 t ⁵ + 14 t ³ – 7 t	64 t ⁷ – 112 t ⁵ + 56 t ³ – 7 t
t^{8} – 8 t^{6} + 20 t^{4} – 16 t^{2} + 2	128 t^8 – 256 t^6 + 160 t^4 – 32 t^2 + 1
t^9 – 9 t^7 + 27 t^5 – 30 t^3 + 9 t	256 t ⁹ – 576 t ⁷ + 432 t ⁵ – 120 t ³ + 9 t
t^{10} – 10 t^8 + 35 t^6 – 50 t^4 + 25 t^2 – 2	512 t^{10} – 1280 t^8 + 1120 t^6 – 400 t^4 + 50 t^2 – 1

Figure: First ten polynomials of $f_n(t)$ next to first ten Chebyshev Polynomials

Where here $T_n(t)$ represents the *n*th Chebyshev polynomial of the first kind.

Let
$$\Gamma = \mathbb{Z}_n$$
. Then the $SL_2\mathbb{C}$ character variety of \mathbb{Z}_n is defined by the polynomial $f_n(t) = \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} (-1)^k [\binom{n-k}{k} + \binom{n-k-1}{n-2k}] t^{n-2k}$

Observation: The *n*th Chebyshev polynomial of the first kind is given explicitly by $T_n(t) = \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} (-1)^k [\binom{n-k}{k} + \binom{n-k-1}{n-2k}] 2^{n-2k-1} t^{n-2k}$

Let $\Gamma = \mathbb{Z}_n$. Then the $SL_2\mathbb{C}$ character variety of \mathbb{Z}_n is in bijective correspondence with the collection $\{\operatorname{tr}(A) | A \in \operatorname{SL}_2\mathbb{C}, A^n = 1\}$

Corollary

The number of points in the $SL_2\mathbb{C}$ character variety of \mathbb{Z}_n is $s(n) = \lfloor \frac{n}{2} \rfloor + 1$.

Corollary

The $SL_2\mathbb{C}$ character variety of \mathbb{Z}_n is given by $\{2\cos(\frac{2\pi k}{n})|k \in \mathbb{Z}\}$.

Fall 2024

Proof that $s(n) = \lfloor \frac{n}{2} \rfloor + 1$

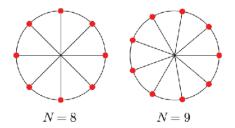


Figure: Roots of Unity

Proof.

Recall that $Hom(\mathbb{Z}_n, SL_2\mathbb{C})/\sim \cong \{A \in SL_2\mathbb{C} | A^n = 1\}/\sim \cong \left\{ \begin{pmatrix} e^{j\frac{2\pi k}{n}} & 0\\ 0 & e^{-j\frac{2\pi k}{n}} \end{pmatrix} \middle| k \in \mathbb{Z} \right\}/\sim$. These are precisely the *n* roots of unity. So s(n) is just the number of distinct traces of matrices in this collection. Hence $s(n) = \lfloor \frac{n}{2} \rfloor + 1$.

We now study the case where $\Gamma = \langle a, b | a^n \rangle$.

We have three variables that define our polynomials tr(A), tr(B) and tr(AB).

And we get the trace relations defining the character variety,

$$tr(A^n) - tr(I) = 0$$

2
$$tr(A^{n+1}) - tr(A) = 0$$

$$tr(BA^n) - tr(B) = 0$$

Let $g_n(x, y, z) = tr(BA^n) - tr(BA)$. Then using the trace relations and defining tr(A) = x, tr(B) = y, and tr(AB) = z we obtain the following functions which generate our character varieties

•
$$g_1(x, y, z) = 0$$

• $g_2(x, y, z) = xy - z - y$

= (x, y, z)

$$g_n(x, y, z) = xg_{n-1}(x, y, z) - g_{n-2}(x, y, z)$$

Let
$$\Gamma = \langle a, b | a^n \rangle$$
, then the $SL_2\mathbb{C}$ character variety of Γ is of the form
 $\mathbb{C} \sqcup \bigsqcup_{i=1}^{N} \mathbb{C}^2$ where $N = \lfloor \frac{n}{2} \rfloor + 1$ when n is odd, and $\mathbb{C} \sqcup \mathbb{C} \sqcup \bigsqcup_{i=1}^{N} \mathbb{C}^2$ where
 $N = \lfloor \frac{n}{2} \rfloor + 1$ when n is even.

Intuition: A generates a cyclic group of order n and is of fixed values while B is always able to act freely and acts separately from AB when A is not the identity.

Example

Let $\Gamma = \langle a, b | a^3 \rangle$. Then the polynomials defining the character variety are $f_1(x, y, z) = x^3 - 3x - 2$ $f_2(x, y, z) = x^4 - 4x^2 - x + 2$ $f_3(x, y, z) = zx^2 - z - xy - y$ The common zeros of these are (-1, y, z) and (2, y, y) for any $y, z \in \mathbb{C}$. Thus the character variety is in bijective correspondence with $\mathbb{C} \sqcup \mathbb{C}^2$.

Classification of Low Complexity Groups

Word Length 2		
Word	Variety	
aa	C+C	
bb	C+C	
a^{-1}a^{-1}	C+C	
b^{-1}b^{-1}	C+C	
Others	С	

Word Length 3		
Word	Variety	
aaa	C+C^2	
bbb	C+C^2	
a^{-3}	C+C^2	
b^{-3}	C+C^2	
Others	С	

18 / 19

3 N 3

- Continue classifying character varieties of finite two generator groups in SL₂C.
- Begin classifying the character varieties of finitely presentable three generator groups in SL₂C or two generator groups with two words.