# Exploring the Groethendieck group via character varieties

## Introduction

The purpose of this project was to explore  $SL_2\mathbb{C}$  character varieties. Loosely speaking, these varieties arise from looking at matrix representations of homomorphisms into  $SL_2\mathbb{C}$  from some group. If  $\Gamma$  is some group, one could ask what is the  $SL_2\mathbb{C}$ character variety of  $\Gamma$ ? The purpose of this project was precisely to answer this question for low complexity groups. We completely answered the question in the case that  $\Gamma$  is cyclic, and we provided answers in some other cases.

## Definition (Character Variety)

Let  $\Gamma = \langle \gamma_1, \ldots, \gamma_n | R_1, \ldots, R_m \rangle$  be some finitely presentable group. The  $SL_2\mathbb{C}$  character variety is the quotient Hom $(\Gamma, SL_2C)//\sim$  of conjugacy classes with closed orbits.

### Lemma (As collection of matrices)

The character variety can be represented as closed equivalence classes of homomorphisms from  $\Gamma$  into  $SL_2(\mathbb{C})$ , that is  $Hom(\Gamma, SL_2C) / \sim \cong \{A_1, ..., A_n \in SL_2(\mathbb{C}) | R_1 = I, ..., R_m = I\}.$ Where each word R<sub>i</sub> corresponds to a word in the generators and requires that the corresponding word in the matrices  $A_1, ..., A_n$ equals the identity matrix I. This perspective adds a concrete way to study the structure of  $\Gamma$  using both algebra and geometry.

## Lemma (As polynomials)

The character variety can also be represented as polynomials using the Cayley-Hamilton theorem which states that  $A^2 - tr(A)A + I = 0$  and, since traces are invariant under conjugation, we can use these to describe the character variety. The relations  $R_1, ..., R_m$  translate into polynomial equations in terms of traces, which are  $tr(R_i) - tr(I) = 0$ . By using both the Cayley-Hamilton theorem and the polynomials induced by the relations of  $\Gamma$ , the character variety can be described as a solution set of polynomial equations in the traces of matrices corresponding to the group generators.

## Nicholas Lear, Dylan Evans



## Mason Experimental Geometry Lab

## April 26, 2024



**3** The character variety is given by  $\{\frac{2\pi k}{n} | k \in \mathbb{Z}\}$ .

Two generators one relation Let  $\Gamma = \langle a, b | a^n \rangle$ . Then The SL<sub>2</sub> $\mathbb{C}$  character variety of  $\Gamma$ Example is given by  $\mathbb{C} \sqcup \bigsqcup \mathbb{C}^2$  where  $N = \lfloor \frac{n}{2} \rfloor + 1$  when *n* is odd, and  $\mathbb{C} \sqcup \mathbb{C} \sqcup \bigcup^n \mathbb{C}^2$  where  $N = \lfloor \frac{n}{2} \rfloor + 1$  when n is even. with  $\mathbb{C} \sqcup \mathbb{C}^2$ .

MEGL

Let  $\Gamma = \langle a, b | a^3 \rangle$ . Then the polynomials defining the character variety are  $f_1(x, y, z) = x^3 - 3x - 2, f_2(x, y, z) = x^4 - 4x^2 - x + 2$ 

and  $f_3(x, y, z) = zx^2 - z - xy - y$ . The common zeros of these are (-1, y, z) and (2, y, y) for any  $y, z \in \mathbb{C}$ . Thus the character variety is in bijective correspondence

| Classification up to Word Length 4                                             |                                                                            |         |               |         |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|---------------|---------|--|--|
|                                                                                | Word Length 2                                                              |         | Word Length 3 |         |  |  |
|                                                                                | Word                                                                       | Variety | Word          | Variety |  |  |
|                                                                                | aa                                                                         | C+C     | aaa           | C+C^2   |  |  |
|                                                                                | bb                                                                         | C+C     | bbb           | C+C^2   |  |  |
|                                                                                | a^{-1}a^{-1}                                                               | C+C     | a^{-3}        | C+C^2   |  |  |
|                                                                                | b^{-1}b^{-1}                                                               | C+C     | b^{-3}        | C+C^2   |  |  |
|                                                                                | Others                                                                     | С       | Others        | С       |  |  |
| Acknowledgments                                                                |                                                                            |         |               |         |  |  |
| Special thanks to Dr. Sean Lawton for mentoring and overseeing                 |                                                                            |         |               |         |  |  |
| this project, as well as our graduate mentor Gabe Lumpkin.                     |                                                                            |         |               |         |  |  |
| References                                                                     |                                                                            |         |               |         |  |  |
| <ul> <li>Sean Lawton, Jean-Phillippe Burelle and Caleb Ashley. Rank</li> </ul> |                                                                            |         |               |         |  |  |
| 1 Character varieties of finitely presented                                    |                                                                            |         |               |         |  |  |
|                                                                                | groups,2017, <i>Geometriae Dedicata</i>                                    |         |               |         |  |  |
|                                                                                | <ul> <li>William Goldman, Trace coordinates on Fricke spaces of</li> </ul> |         |               |         |  |  |

Teichmuller Theory

some simple hyperbolic surfaces, 2009, Handbook of