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RESEARCH TOPIC

The premise of our research is to study how
neural networks change the data passed
through them using tools from topological data -
analysis.




WHAT ARE
NEURAL NETWORKS ?
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BUT WHAT IS ANN
MATHEMATICALLY
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. MATHEMATICALLY, gummmi®

e INpuUts and outputs are vectors

e Architecture is a composition of affine
and non-linear transformations

e g(x) is aregression function used for
classification




TOPOLOGICAL |
DATAANALYSIS |

e "Data has shape,” and shape has meaning. [

* |s it possible to measure the complexity of t

3D UMAP Projection of CIFAR-10 (50,000 points)

manifold?
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SIMPLICAL
COMPLEX

e How to create a manifold from point cloud
datasets?

e Create a set containing the n-dimensional
connections between points to triangulate the
data manifold




PERSISTENT HOMOLOGY
RIPS COMPLEX

e Allows us to create simplicial

complexes from a point cloud
with a growing parameter &.
e As € grows, the structure of our
data transforms and certain
W features persists longer than
\ther features.

o We call this process

filtration



PERSISTENT HOMOLOGY
PERSISTENT DIAGRAMS

e Most of the time, we’re dealing with hundreds to up to thousands
of data points. So we use Persistent Diagrams [3] to easily
condense, visualize, and analyze our data.

e Maps time of birth and death of topological features“

o Features give insight into shape characteristics of the data




PERSISTENT HOMOLOGY
PERSISTENT LANDSCAPE e

e We can then transform our depsistene
persistent diagram into a
persistent landscape

e This process also vectorizes our
data by mapping to a Function

. OPace.

. Wé‘caqn now use Linear Algebra to Persistert

Lonascare

study th e topology of the data.
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) LANDSCAPES

e By calculating the topological

Persistence
Diagram for the

% i
k' -homology Connect the

Dam.. dots with lines
Ao \ and remove the

complexity, we can interpret the P
/\<t) «— function
StrUCture Of Our data Repeat this process with all

of the homologies for the

e To do this, we convert the persistence [RaEEEEEEdtil

diagram into a function called an We can define the TO of a dataset as
activation landscape HMW@:/(Mmmf
J 0

e The norm of this function is the TC [2]
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TOPOLOGICAL «
COMPLEXITY

We start by creating a new function which plots the TC
of our dataset at each layer then normalizing the
domain to be the unit interval (0,1).

e This measures how the topological complexity of the
data changes over the whole NN.

TC; == || Xi(t)]]; Norm of this function

\ normalized to the unit
interval (0,1)

Neural />

Network TC of dataset at

the ith layer connected
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AVERAGE NORMS OF THE ACTIVATION LANDSCAPES USING A
LARGER NUMBER OF TRAINING ACCURACY THRESHOLDS WITH
CONSECUTIVE LAYERS CONNECTED BY LINE SEGMENTS [2]




CURRENT “
CONJECTURE

Let D = {v;}™, with v; € R%, and let N(z) = go fy o---o fi(z) represent an
N-layer fully trained neural network.

Notation: The k-th activation layer of the network is denoted as N(¥)(z) =
fro---0o fi(x) for kK < N. Starting from an initialized model Ny(z) at epoch
t = 0, we say the model is trained when N;(z) — N(x) ast — T, where T is the
total number of training epochs.

Conjecture: Let D,gk) denote the transformed data up to the k-th layer after ¢

training epochs, and let TCgk’p) represent the p-th dimensional topological com-

plexity of ng). Then for some K < N, if N;(x) — N(x), there exists a training
epoch t; such that

TCgf’O) > TCgf’p) forall p> 0

and for some K < k < N.
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MOTIVATION BERIND EXPERIM

AVERAE NORMS OF THE ACTIVATION LANDSCAPE USING A
LARGER NUMBER OF TRAINING ACCURACY THRESHOLDS WITH
CONSECUTIVE LAYERS CONNECTED BY LINE SEGMENTS [2]




MOTIVATION BEHINDEEXPERIME




CUSTOM 6-LAYER -
MODEL — 9

Topological Complexity Over Training

e Trained off of the CIFAR-10 — Norm of TC_0

Norm of TC 1
—— Norm of TC_2

Dataset
o Trained to be 80%
curate

e Computed on the Hopper
Compute Cluster




RESNET-NN
MODEL

e Trained off of the CIFAR-10
Dataset
o Trained to be 70%
ccurate

Topological Complexity Over Training

e Computed on the Hopper
Compute Cluster




LIMITATIONS

3D UMAP Projection of CIFAR-10 (50,000 points)

3D UMAP Projection of CIFAR-10 (1,000 points)

UMAP Dimension 3

UMAP Dimension 3
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Topology of Neural Networks

GitHub respository for the Topology of Neural Networks team at the Mason Experimental Geometry Laboratory.

https://megl.science.gmu.edu/

Abstract

A neural network may be geometrically interpreted as nonlinear function that stretches and pulls apart data between
vector spaces. If a dataset has interesting geometric or topological structure, one might ask how the structure of the
data will change when passed through a neural network. This is achieved by explicitly viewing the dataset as a
manifold and observing how the topological complexity (i.e., the sum of the Betti numbers) of the manifold changes
as it passes through the activation layers of a neural network. The goal of this project is to study how the topological
complexity of the data changes by tuning the hyper-parameters of the network. This enables us to possibly

understand the relationship between the structural mechanics of the network and its performance.



