MEGL - SP24

JJ. FB. CL. DH.

THE TOPOLOGY OF NEURAL NETWORKS

December 6th 2024

UNDER THE DIRECTION OF DR. SCHWEINHART GRADUATE MENTOR: S POTHAGONI

RESEARCH TOPIC

The premise of our research is to study how neural networks change the data passed through them using tools from topological data analysis.

WHATARE NEURAL NETWORKS?

BUTWHATISANN MATHEMATICALLY DOING?

MATHEMATICALLY,

 $g \circ f_n \circ f_{n-1} \circ \cdots \circ f_1(x)$

- Inputs and outputs are vectors
- Architecture is a composition of affine and non-linear transformations
- g(x) is a regression function used for classification

$$a(x) := \frac{1}{1 + e^{-x}} \quad a(x) := \tanh(x)$$

 $a(x) := \max(0, x)$

$$f_i(x) = a(W_i x + b_i)$$

TOPOLOGICAL DATA ANALYSIS

• "Data has shape," and shape has meaning. [1]

• Is it possible to measure the complexity of the

manifold?

SIMPLICAL COMPLEX

- How to create a manifold from point cloud datasets?
- Create a set containing the n-dimensional connections between points to triangulate the

data manifold

PERSISTENT HOMOLOGY RIPS COMPLEX

- Allows us to create simplicial complexes from a point cloud with a growing parameter ε.
- As ε grows, the structure of our data transforms and certain features persists longer than other features.
 - We call this process
 filtration

PERSISTENT HOMOLOGY

- PERSISTENT DIAGRAMS

 Most of the time we're dealing with hundreds
- Most of the time, we're dealing with hundreds to up to thousands of data points. So we use *Persistent Diagrams* [3] to easily condense, visualize, and analyze our data.
- Maps time of birth and death of topological features
 - Features give insight into shape characteristics of the data

PERSISTENT HOMOLOGY PERSISTENT LANDSCAPE

- We can then transform our persistent diagram into a persistent landscape
- This process also vectorizes our data by mapping to a Function Space.
- We can now use Linear Algebra to study the topology of the data.

ACTIVATION LANDSCAPES

- By calculating the topological complexity, we can interpret the structure of our data
- To do this, we convert the persistence diagram into a function called an activation landscape
- The norm of this function is the TC [2]

Persistence Diagram for the k^{th} -homology Connect the dots with lines and remove the $\lambda_k(t)$ lower ones to make it a function

Repeat this process with all of the homologies for the Activation Landscape curve

We can define the TC of a dataset as the norm of this function

$$||\lambda(t)||_{L^2}^2 = \int_0^\infty (\lambda(t))^2 dt$$

TOPOLOGICAL COMPLEXITY

- We start by creating a new function which plots the TC of our dataset at each layer then normalizing the domain to be the unit interval (0,1).
- This measures how the topological complexity of the data changes over the whole NN.

Neural Network

 $g \circ f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x)$

 $TC_i := ||\lambda_i(t)||_{L^2}$

TC of dataset at the ith layer connected

with lines

Norm of this function normalized to the unit interval (0,1)

$$||\hat{T}(t)||_{L^2} = \sqrt{\int_0^\infty (\hat{T}(t))^2 dt}$$

AVERAGE NORMS OF THE ACTIVATION LANDSCAPES USING A LARGER NUMBER OF TRAINING ACCURACY THRESHOLDS WITH CONSECUTIVE LAYERS CONNECTED BY LINE SEGMENTS [2]

CURRENT CONJECTURE

Let $\mathcal{D} = \{v_i\}_{i=1}^n$ with $v_i \in \mathbb{R}^d$, and let $N(x) = g \circ f_N \circ \cdots \circ f_1(x)$ represent an N-layer fully trained neural network.

Notation: The k-th activation layer of the network is denoted as $N^{(k)}(x) = f_k \circ \cdots \circ f_1(x)$ for k < N. Starting from an initialized model $N_0(x)$ at epoch t = 0, we say the model is trained when $N_t(x) \to N(x)$ as $t \to T$, where T is the total number of training epochs.

Conjecture: Let $\mathcal{D}_t^{(k)}$ denote the transformed data up to the k-th layer after t training epochs, and let $\mathrm{TC}_t^{(k,p)}$ represent the p-th dimensional topological complexity of $\mathcal{D}_t^{(k)}$. Then for some K < N, if $N_t(x) \to N(x)$, there exists a training epoch t_i such that

$$\mathrm{TC}_{t_i}^{(k,0)} > \mathrm{TC}_{t_i}^{(k,p)}$$
 for all $p > 0$

and for some $K \leq k \leq N$.

MOTIVATION BEHIND EXPERIMENT

AVERAGE NORMS OF THE ACTIVATION LANDSCAPES USING A LARGER NUMBER OF TRAINING ACCURACY THRESHOLDS WITH CONSECUTIVE LAYERS CONNECTED BY LINE SEGMENTS [2]

MOTIVATION BEHIND EXPERIMENT

CUSTOM 6-LAYER MODEL

- Trained off of the CIFAR-10
 Dataset
 - Trained to be 80% accurate
- Computed on the Hopper
 Compute Cluster

RESNET-NN MODEL

- Trained off of the CIFAR-10
 Dataset
 - Trained to be 70% accurate
- Computed on the Hopper
 Compute Cluster

LIMITATIONS

ALLIN ALL Quick Recap

WHAT IS REALLY HAPPENING?

1. Training a NN

2. Simplicial Complexes

6. Experiments & Results

5. Activation Landscapes

4. Topological Complexity

3. Persistence Diagrams

CITATIONS

- 1. Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim.

 Topology of deep neural networks. The Journal of Machine
 Learning Research, 21(1):7503-7542, 2020.
- 2.M. Wheeler, J. Bouza and P. Bubenik, "Activation Landscapes as a Topological Summary of Neural Network Performance," in 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 2021 pp. 3865-3870.
- **3.**Giusti, C., & Lee, D. (2023b). Signatures, Lipschitz-free spaces, and paths of persistence diagrams. SIAM Journal on Applied Algebra and Geometry, 7(4), 828–866.

https://doi.org/10.1137/22m1528471

GITHUB

☐ README

Topology of Neural Networks

GitHub respository for the Topology of Neural Networks team at the Mason Experimental Geometry Laboratory.

https://megl.science.gmu.edu/

Abstract

A neural network may be geometrically interpreted as nonlinear function that stretches and pulls apart data between vector spaces. If a dataset has interesting geometric or topological structure, one might ask how the structure of the data will change when passed through a neural network. This is achieved by explicitly viewing the dataset as a manifold and observing how the topological complexity (i.e., the sum of the Betti numbers) of the manifold changes as it passes through the activation layers of a neural network. The goal of this project is to study how the topological complexity of the data changes by tuning the hyper-parameters of the network. This enables us to possibly understand the relationship between the structural mechanics of the network and its performance.