Finite 2-Groups

Nicholas Lear, Morgan Shuman, Anthony Vu

George Mason University, MEGL

April 26, 2024

Background: What is a 2-Group?

2-Group:

Definition

A (strict) **2-group** is a category (i.e. a collection of objects and morphisms) with a binary operation (\otimes) such that:

- The operation is closed and associative.
- There exists an identity object.
- All objects and morphisms are invertible under ⊗

Background: Crossed Modules

Definition

A **crossed module** $\mathbb{X} = (G, H, t, \alpha)$ consists of two groups G and H, a homomorphism $t : H \to G$, and a group action $\alpha : G \to \operatorname{Aut} H$.

$$\alpha \bigvee_{t}^{\nearrow} \int_{G}^{t}$$

Satisfying equivariance:

$$t(\alpha_g h) = gt(h)g^{-1}$$

and the Peiffer identity:

$$\alpha_{t(h)}h' = hh'h^{-1}$$

Background: Smallest Nontrivial Crossed Module

Example

Consider the crossed module $\mathbb{X} = (\mathbb{Z}_4, \mathbb{Z}_4, t, \alpha)$, letting t(1) = 2 and $\alpha_1(1) = \alpha_3(1) = 3$, and $\alpha_1(3) = \alpha_3(3) = 1$.

0 and 2 act trivially: $\alpha_0(h) = \alpha_2(h) = h$.

Background: 2-Groups and Crossed Modules Induce Each Other

We can construct a crossed module from a 2-group: H represents the unit-source morphisms, and G represents the objects in a 2-group.

Homomorphism $t: H \to G$ is represented by the targets of the unit-source morphisms, and α is represented by conjugation $\mathrm{id}_g \otimes h \otimes \mathrm{id}_{g^{-1}}$.

Similar argument holds to show the construction of a 2-group from a crossed module, with α as the semidirect product $(h,g)\otimes (h',g')=(h\alpha_g(h'),gg').$

Current Results

- First Isomorphism Theorem for Crossed Modules
 - Verified definition of a homomorphism and isomorphism of crossed modules
 - Verified definition of kernel, image, normal and quotient crossed modules
- Progress on Fundamental Theorem of Finite Abelian Crossed Modules

- Asserted definition of a cyclic crossed module, and a "direct sum of cyclic crossed modules"
- Current strategies of furthering progress on such a theorem.

Crossed Submodules, Normal Crossed Submodules

Definition

A **crossed submodule** $\mathbb{X}^* = (G^*, H^*, t^*, \alpha^*)$ of a crossed module $\mathbb{X} = (G, H, t, \alpha)$ satisfies the following conditions: G^* is a subgroup of G, H^* is a subgroup of H, t^* is the restriction of t on

Definition

A crossed submodule $\mathbb{X}^* = (G^*, H^*, t^*, \alpha^*)$ is **normal** if it satisfies these conditions:

- G^* is a normal subgroup of G.
- For $g \in G$, $h' \in H^*$, $\alpha_g(h') \in H^*$.
- ullet For $h\in H, g'\in G^*$, $lpha_{g'}(h)h^{-1}\in H^*$

 H^* , and α^* is the restriction of α on G^* , H^* .

Remark: H^* being a normal subgroup of H is guaranteed by the Peiffer identity.

Quotient Crossed Module

Definition

Given a crossed module \mathbb{X} and a crossed submodule \mathbb{X}^* , a **quotient** crossed module $\mathbb{X}/\mathbb{X}^* = (G/G^*, H/H^*, \tilde{t}, \tilde{\alpha})$ can be constructed such that $\tilde{t}(hH^*) = t(h)G^*$ and $\tilde{\alpha}_{gG^*}hH^* = \alpha_g(h)H^*$.

Theorem

The construction above is a crossed module.

In order to prove this, we must show that:

- \tilde{t} , $\tilde{\alpha}$ are well-defined
- ullet is a group homomorphism, $ilde{lpha}$ is a group action
- $\tilde{t}, \tilde{\alpha}$ satisfy equivariance and the Peiffer identity.

Quotient Crossed Modules are Crossed Modules (pt. 1)

Recall we define \tilde{t} by $\tilde{t}(hH^*) = t(h)G^*$. To show this is a well defined map, we show that \tilde{t} is independent of the choice of h.

Proof.

 \tilde{t} is well-defined. Let $h_1H^*=h_2H^*$. We want to show $t(h_1)G^*=t(h_2)G^*$. Recall that if $h_1H^*=h_2H^*$, there exists $n\in H^*$ such that $h_1=h_2n$.

Thus, $t(h_1)G^* = t(h_2n) = t(h_2)t(n)G^* = t(h_2)G^*$.

Quotient Crossed Modules are Crossed Modules (pt. 2)

Proof.

 $\tilde{\alpha}$ is well-defined. Let $h_1H^*=h_2H^*$ and $g_1G^*=g_2G^*$. We want to show $\alpha_{g_1}(h_1)H^* = \alpha_{g_2}(h_2)H^*$. There exists $n \in H^*$, $n' \in G^*$ such that $h_1 = h_2 n, g_1 = g_2 n'.$

Thus, $\alpha_{g_1}(h_1)H^* = \alpha_{g_2n'}(h_2n) = \alpha_{g_2n'}(h_2)\alpha_{g_2n'}(n)H^* = \alpha_{g_2n'}(h_2)H^*$ since $\alpha_{g_2n'}(n) \in H^*$ by \mathbb{X}^* being a normal crossed submodule.

$$\alpha_{g_{2}n'}(h_{2})H^{*} = \alpha_{g_{2}}(\alpha_{n'}(h_{2}))H^{*}$$

$$= \alpha_{g_{2}}(\alpha_{n'}(h_{2})h_{2}^{-1}h_{2})H^{*}$$

$$= \alpha_{g_{2}}(\alpha_{n'}(h_{2})h_{2}^{-1})\alpha_{g_{2}}(h_{2})H^{*}$$

$$= \alpha_{g_{2}}(\alpha_{n'}(h_{2})h_{2}^{-1})H^{*}\alpha_{g_{2}}(h_{2})$$

$$= H^{*}\alpha_{g_{2}}(h_{2}) = \alpha_{g_{2}}(h_{2})H^{*}$$

Quotient Crossed Modules are Crossed Modules (pt. 3)

Proof.

 \tilde{t} is a group homomorphism. $\tilde{t}(h_1H^*h_2H^*) = \tilde{t}(h_1h_2H^*) = t(h_1h_2)G^* = t(h_1)t(h_2)G^* = t(h_1)G^*t(h_2)G^* = \tilde{t}(h_1H^*)\tilde{t}(h_2H^*).$

$\tilde{\alpha}$ is a group action.

- $\bullet \ \tilde{\alpha}_{e_G G^*}(hH^*) = \alpha_{e_G}(h)H^* = hH^*.$
- $\tilde{\alpha}_{g_1G^*}(\tilde{\alpha}_{g_2G^*}(hH^*)) = \tilde{\alpha}_{g_1G^*}(\alpha_{g_2}(h)H^*) = \alpha_{g_1}(\alpha_{g_2}(h))H^* = \alpha_{g_1g_2}(h)H^* = \tilde{\alpha}_{g_1g_2G^*}(hH^*) = \tilde{\alpha}_{g_1G^*g_2G^*}(hH^*).$
- $\tilde{\alpha}_{gG^*}(h_1H^*h_2H^*) = \tilde{\alpha}_{gG^*}(h_1h_2H^*) = \alpha_g(h_1h_2)H^* = \alpha_g(h_1)\alpha_g(h_2)H^* = \alpha_g(h_1)H^*\alpha_g(h_2)H^* = \tilde{\alpha}_g(h_1H^*)\tilde{\alpha}_g(h_2H^*)$

Quotient Crossed Modules are Crossed Modules (pt. 4)

Recall that in order for (H, G, t, α) to form a crossed module, t and α must satisfy equivarience

$$t(\alpha_g h) = gt(h)g^{-1}$$

and the Peiffer identity:

$$\alpha_{t(h)}h' = hh'h^{-1}$$

Proof.

 $\tilde{t}, \tilde{\alpha}$ satisfy equivariance and the Peiffer identity.

Equivariance: $\tilde{t}(\tilde{\alpha}_{gG^*}(hH^*)) = \tilde{t}(\alpha_g(h)H^*) = t(\alpha_g(h))G^* =$ $gt(h)g^{-1}G^* = gG^*t(h)G^*g^{-1}G^* = gG^*\tilde{t}(hH^*)g^{-1}G^*$

Peiffer Identity:

 $\tilde{\alpha}_{\tilde{t}(hH^*)}(h'H^*) = \alpha_{t(h)}(h')H^* = hh'h^{-1}H^* = hH^*h'H^*h^{-1}H^*$

Morphisms of Crossed Modules

Definition

A morphism of crossed modules $f = (\delta, \gamma) : \mathbb{X} \to \mathbb{X}'$, with

 $\mathbb{X} = (G, H, t, \alpha)$ and $\mathbb{X} = (G', H', t', \alpha')$, refers to the diagram below:

$$\begin{array}{ccc}
H & \xrightarrow{\delta} & H' \\
\alpha \left(& \downarrow t & \downarrow t' \right)_{\alpha'} \\
G & \xrightarrow{\gamma} & G'
\end{array}$$

The diagram satisfies three conditions:

- $\bullet \ \gamma, \delta \ {\rm are \ group \ homomorphisms}$
- $t' \circ \delta = \gamma \circ t$
- $\delta(\alpha_{\mathbf{g}}(h)) = \alpha'_{\gamma(\mathbf{g})}(\delta(h)).$

Isomorphisms of Crossed Modules

Definition

Let $f = (\delta, \gamma) : (H, G, t, \alpha) \to (H', G', t', \alpha')$ be a morphism of crossed modules. Then f is an isomorphism of crossed modules if there exists another morphism $f^{-1} : (H', G', t', \alpha') \to (H, G, t, \alpha)$ so that $f^{-1} \circ f = \operatorname{id} : (H, G, t, \alpha) \to (H, G, t, \alpha)$ and $f \circ f^{-1} = \operatorname{id} : (H', G', t', \alpha') \to (H', G', t', \alpha')$. $H \xrightarrow{f} H'$

$$\begin{array}{ccc}
& H & \xrightarrow{f} & H' \\
& & \downarrow_{t} & \xrightarrow{f-1} & \downarrow_{t'} \\
& G & \xrightarrow{f} & G'
\end{array}$$

Lemma

Let (δ, γ) be a morphism of crossed modules. If δ, γ are group isomorphisms, then (δ, γ) is an isomorphism of crossed modules.

The Kernel Crossed Submodule (pt. 1)

Example

Given a morphism of crossed modules $f: \mathbb{X} \to \mathbb{X}'$, the **kernel crossed** submodule $\operatorname{Ker} f = (\operatorname{Ker} \gamma, \operatorname{Ker} \delta, t^* = t|_{\operatorname{Ker} \delta}, \alpha^* = \alpha|_{\operatorname{Ker} \gamma \times \operatorname{Ker} \delta})$ is a crossed submodule of \mathbb{X} .

Proof.

Ker γ and Ker δ are subgroups. Since the diagram commutes, it implies that Ker δ must map to Ker γ , and $e_H=\alpha'_{\gamma(g)}(\delta(h))=\delta(\alpha_g(h))$ for $g\in \text{Ker}\gamma, h\in \text{Ker}\delta$ implies $\alpha_g(h)\in \text{Ker}\delta$.

The Kernel Crossed Submodule (pt. 2)

Example

The **kernel crossed submodule** Kerf is a normal crossed submodule.

Proof.

- Ker γ is a normal subgroup of G.
- $\alpha_g(h') \in \operatorname{Ker}\delta$ since $\delta(\alpha_g(h^*)) = \alpha'_{\gamma(g)}(\delta(h^*)) = e_{H'}$ if $h^* \in \operatorname{Ker}\delta$.
- $\delta(\alpha_{g^*}(h)) = \alpha'_{e_{G'}}(\delta(h)) = \delta(h)$, which implies $\delta(\alpha_{g^*}(h))\delta(h^{-1}) = \delta(h)\delta(h^{-1})$, and thus $\delta(\alpha_{g^*}(h)h^{-1}) = e_{H'}$ so $\alpha_{g^*}(h)h^{-1} \in \operatorname{Ker}\delta$.

The Image Crossed Submodule

Example

Given a morphism of crossed modules

$$f=(\gamma,\delta):(H,G,t,\alpha) \to (H',G',t',\alpha')$$
, the **image crossed submodule** ${\rm Im} f=({\rm Im} \gamma,{\rm Im} \delta,t^*=t'|_{{\rm Im} \delta},\alpha^*=\alpha'|_{{\rm Im} \gamma \times {\rm Im} \delta})$ is a crossed submodule of $\mathbb{X}'.$

Proof.

$$\begin{array}{ccc}
H & \xrightarrow{\delta} \operatorname{Im} \delta & \longrightarrow & H' \\
\alpha \left(& \downarrow t & \stackrel{\alpha^*}{\downarrow} & \uparrow & \downarrow t' \\
G & \xrightarrow{\gamma} & \operatorname{Im} \gamma & \longrightarrow & G'
\end{array}$$

It follows that ${\rm Im}\gamma$, ${\rm Im}\delta$ are subgroups of G',H' respectively. By the diagram commuting, $t'|_{{\rm Im}\delta}$ exists, and $\delta(\alpha_g(h))=\alpha'_{\gamma(g)}(\delta(h))$ implies $\alpha'|_{{\rm Im}\gamma\times{\rm Im}\delta}$ exists.

The First Isomorphism Theorem for Crossed Modules

Theorem

Let (γ, δ) : $(G, H, t, \alpha) \rightarrow (G', H', t', \alpha')$ be a morphism of crossed modules. Then there exists an isomorphism of crossed modules (β, η) : $(H/\text{Ker}\delta, G/\text{Ker}\gamma, \tilde{t}, \tilde{\alpha}) \rightarrow (Im\delta, Im\gamma, t'|_{Im\delta}, \alpha'|_{Im\gamma \times Im\delta})$. In particular, the maps are given by $\eta(h\text{Ker}\delta) = \delta(h)$ and $\beta(g\text{Ker}\gamma) = \gamma(g)$.

Proof.

$$\begin{array}{ccc} H/\mathsf{Ker}\delta & \stackrel{\eta}{\longrightarrow} & \mathsf{Im}\delta \\ \stackrel{7}{\tilde{\alpha}} & \stackrel{t'}{\downarrow} & \stackrel{t'|_{\mathsf{Im}\delta}}{\downarrow} & \stackrel{\gamma}{\nearrow} & \alpha'|_{\mathsf{Im}\gamma \times \mathsf{Im}\delta} \\ G/\mathsf{Ker}\gamma & \stackrel{\beta}{\longrightarrow} & \mathsf{Im}\gamma & \end{array}$$

 eta,η are isomorphisms from the first isomorphism theorem for groups. $eta(ilde{t}(h \mathrm{Ker}\delta)) = eta(t(h)\mathrm{Ker}\gamma) = \gamma(t(h)) = t'(\delta(h)) = t'(\eta(h \mathrm{Ker}\delta)).$ $\eta(ilde{lpha}_{g \mathrm{Ker}\gamma}(h \mathrm{Ker}\delta)) = \eta(lpha_g(h)\mathrm{Ker}\delta) = \delta(lpha_g(h)) = lpha'_{\gamma(g)}(h) = lpha^*_{\beta(g \mathrm{Ker}\gamma)}(h).$ Similar argument for the other direction.

Finite Abelian 2-Groups

Definition

A **finite abelian 2-group** is a 2-group with finitely many objects and morphisms that has its operation (\otimes) commutative.

Theorem

A finite abelian 2-group induces a crossed module where G, H are abelian and α is trivial: $\alpha_g h = h$ for $g \in G, h \in H$.

Proof.

If \otimes is communitative for objects and morphisms in \mathcal{G} , then certainly G is abelian and H is abelian by construction.

Since α is conjugation ($id_g \otimes h \otimes id_{g^{-1}}$), then:

$$\operatorname{id}_{g} \otimes h \otimes \operatorname{id}_{g^{-1}} = \operatorname{id}_{g} \otimes \operatorname{id}_{g^{-1}} \otimes h = \operatorname{id}_{1} \otimes h = h.$$

Notion of a Cyclic Crossed Module

Definition

We define a **cyclic crossed module** $\mathbb{X} = (G, H, t, \alpha)$ to be when G and H are cyclic groups, and α is trivial.

Theorem

A cyclic crossed module induces an abelian 2-group.

Proof.

We want to show that
$$(h,g)\otimes (h',g')=(h',g')\otimes (h,g)$$
. $(h,g)\otimes (h',g')=(h\alpha_g(h'),gg')=(hh',gg')=(h'h,g'g)=(h'\alpha_{g'}(h),g'g)=(h',g')\otimes (h,g)$.

Inducing a Crossed Module Structure

Theorem

Given a crossed module $\mathbb{X} = (G, H, t, \alpha)$ and isomorphisms $\delta : H \to H'$ and $\gamma : G \to G'$, we can induce a crossed module structure as follows:

$$\begin{array}{ccc}
H & \xrightarrow{\delta} & H' \\
\alpha & \downarrow t & \downarrow t' \\
G & \xrightarrow{\gamma} & G'
\end{array}$$

We define $t' := \gamma \circ t \circ \delta^{-1}$ and $\alpha' := \delta(\alpha_{\gamma^{-1}}(\delta^{-1}))$

Remark: The induced crossed module structure $\mathbb{X}' = (G', H', t', \alpha')$ creates an isomorphism of crossed modules $(\gamma, \delta) : \mathbb{X} \to \mathbb{X}'$

Example: Inducing a Crossed Module Structure

Example

In group theory, every finite abelian group is isomorphic to a direct sum of cyclic groups of prime order.

$$H\cong \mathbb{Z}_{p_1}\oplus \mathbb{Z}_{p_2}\oplus \cdots \oplus \mathbb{Z}_{p_k} \qquad G\cong \mathbb{Z}_{q_1}\oplus \mathbb{Z}_{q_2}\oplus \cdots \oplus \mathbb{Z}_{q_m}$$

If the crossed module $\mathbb X$ is an abelian crossed module, we can induce a crossed module structure from such isomorphisms.

$$H \xrightarrow{\delta} \mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \cdots \oplus \mathbb{Z}_{p_k}$$

$$\downarrow^t \qquad \qquad \downarrow^{t'}$$

$$G \xrightarrow{\gamma} \mathbb{Z}_{q_1} \oplus \mathbb{Z}_{q_2} \cdots \oplus \mathbb{Z}_{q_m}$$

However, is this enough?

Direct Sum of Cyclic Crossed Modules

Definition

We define a **direct sum of cyclic crossed modules** by the following intuition:

$$\mathbb{Z}_{p_1}$$
 \mathbb{Z}_{p_1} \mathbb{Z}_{p_n} \mathbb{Z}_{p_n} $\mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \cdots \oplus \mathbb{Z}_{p_n}$

$$\downarrow t_1 \oplus \downarrow t_2 \oplus \cdots \oplus \downarrow t_n := \qquad \downarrow \overline{t}$$

$$\mathbb{Z}_{q_1}$$
 \mathbb{Z}_{q_2} \mathbb{Z}_{q_n} $\mathbb{Z}_{q_1} \oplus \mathbb{Z}_{q_2} \oplus \cdots \oplus \mathbb{Z}_{q_n}$

We define \overline{t} as (t_1, t_2, \ldots, t_n) .

Notice

The group action α is omitted in this definition since it's defined to be the trivial action $\alpha_g(h) = h$.

Isomorphisms to Direct Sums of Cyclic Crossed Modules

Example

Consider the direct sum of cyclic crossed modules $(\mathbb{Z}_2, \mathbb{Z}_2, id)$ and $(\langle 0 \rangle, \mathbb{Z}_2, id)$.

$$\begin{array}{cccc} \mathbb{Z}_2 & & \langle 0 \rangle & \mathbb{Z}_2 \oplus \langle 0 \rangle \\ & & \downarrow \mathsf{id} & \oplus & & \downarrow \mathsf{id} & := & \downarrow & \overline{t} = (\mathsf{id}, \mathsf{id}) \\ \mathbb{Z}_2 & & \mathbb{Z}_2 & & \mathbb{Z}_2 \oplus \mathbb{Z}_2 \end{array}$$

The direct sum of crossed modules is isomorphic to $(\mathbb{Z}_2, \mathbb{Z}_2 \oplus \mathbb{Z}_2, t)$, where t(1) = (1, 0).

$$\begin{array}{ccc} \mathbb{Z}_2 \oplus \langle 0 \rangle & \stackrel{\cong}{\longrightarrow} & \mathbb{Z}_2 \\ & & \downarrow^{\bar{t}} & & \downarrow^t \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 & \stackrel{\cong}{\longrightarrow} & \mathbb{Z}_2 \oplus \mathbb{Z}_2 \end{array}$$

Isomorphisms to Direct Sums (pt. 2)

Notice

Crossed modules with different homomorphism t may be isomorphic to the same direct sum of cyclic crossed modules.

Consider the previous diagram, but let t(1)=(1,1) for $(\mathbb{Z}_2,\mathbb{Z}_2\oplus\mathbb{Z}_2,t)$.

Isomorphism at the bottom is characterized by $(1,0)\mapsto (1,1), (1,1)\mapsto (1,0).$

Finding the "right" isomorphisms, given some abelian crossed module, is a lot more challenging.

Open Research Questions

- We can induce a crossed module structure via isomorphism by the Fundamental Theorem of Finite Abelian Groups. Is that induced structure isomorphic to a direct sum of cyclic crossed modules (if so, is there an algorithm)?
- What is the intuition for a 2-group having equivalences in the crossed module setting? Are there analogues for these theorems for equivalences?
- A 2-group need not have strict inverses for objects (i.e. for a **weak** inverse g^{-1} to g, $g \otimes g^{-1} \cong 1 \cong g^{-1} \otimes g$). What further theorems can be obtained from this structure?

References

- John C. Baez and Aaron D. Lauda. Higher-dimensional Algebra V: 2-Groups, 2004.
- M. Ladra and A. R.-Grandjean. Crossed modules and homology. J. Pure Appl. Algebra, 95(1):41-55, 1994.
- Behrang Noohi. Notes on 2-groupoids, 2-groups and crossed-modules, 2008.
- Sven-S. Porst. Strict 2-groups are crossed modules, 2008.

Thank you!