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Introduction
The aim of this project is to explore a conjecture (Main
Conjecture below) involving principal minors of the Fourier
matrix (also called the DFT matrix). The conjecture arose in the
context of some recent research and some informal numerical
work has been done on this conjecture and it has been confirmed
up to N = 20. We started with a theorem found in [1] and [2].

Key Definitions

Definition (N th Root of Unity)
For N ∈ N, the primitive N-th root of unity is defined by

ωN = ω = e2πi/N = cos(2π/N) + i sin(2π/N), i2 = −1.

Definition (The Discrete Fourier Transform Matrix)
For N ∈ N, the N × N Fourier (or DFT) matrix, WN, is defined
by

WN =
(
ωjk
N

)N−1

j ,k=0

When N is understood, we write WN = W and ωN = ω.

Definition (Principal Submatrices and Minors)

Given I ⊆ {0, 1, . . . , N − 1}, and M an N × N matrix, M I is
the |I | × |I | submatrix of M whose column and row indices both
come from I . The principal minor of M corresponding to I is
det(M I).

Main Conjecture
For every N ∈ N, there exists a permutation σ of
{0, 1, . . . , N − 1} such that every principal minor of the matrix
W σ

N is nonzero. Here W σ
N is the DFT matrix WN whose rows

have been permuted by σ.

Some known results
Theorem
(Chebotarev) If N is prime, then every minor of WN is nonzero.
This includes all principal minors.

Theorem
(Tao, Evans and Isaacs) Given
I = {a1, a2, . . . , an} ⊆ {0, 1, . . . , N − 1}, if

ΦN(1) ̸ |
∏

i<j(aj − a1)

(n − 1)!(n − 2)! · · · (2)!(1)!
then for any σ, det((W σ

N )
I) ̸= 0. Here ΦN(x) is the N

th

cyclotomic polynomial.

If N = p prime, then ΦN(1) = p thereby proving
Chebotarev’s Theorem.

If N = pk, then also ΦN(1) = p.

Results

Most of our work has been to prove some theorems to
be able to work with principal submatrices and minors
and to numerically confirm the conjecture past N = 20.
We provide the theorems and proof outlines below.

Theorem 1: The Twin Singularity Theorem
Theorem 2: The Sliding Theorem
Theorem 3: Principal Vandermonde Submatrices

Theorems and Proof Outlines

Theorem
(Twin Singularity Theorem) Given
I ⊆ {0, 1, . . . , N − 1}, and any σ, let A = (W σ

N )
I and

B = (W σ
N )

I c. Then det(A) and det(B) are either both
zero or both nonzero.

Outline:
1. The vector v ∈ ker(A) projected into v 7→ x ∈ Cn

where x has non-zero entries associated to the column
vectors {ai}. We know that v exist since A is singular
and now we want to use the fact that WN is invertiable.
2. We know that WNx = x̂ is not zero since Wn is
invertible and since v ∈ ker(A), there are 0’s in all of
the coordinates of x̂ that correspond to the column
vectors {ai}.
3. The next step is to multiply both sides by
W−1

N = WN and take the conjugate. The key is that
conjugation keeps all of the non-zero entries in their
place and will not send them to zero.
4. We then project our conjugated vector down and
show that the principle submatrix associated to the
column vectors {ai}c has a non-trivial kernel, which
means that it is singular.

Theorem
(Sliding Theorem) Let WN be the N × N DFT matrix
and I = {a0, . . . , ar} ⊆ {0, . . . ,N − 1} ⊂ N be and
ordered set of indices such that a0 ̸= 0 and let
I0 = {0, a1 − a0, . . . , ar − a0}. The principal submatrix,
W I

N is non-singular if and only if W I0
N is non-singular.

We did this by factoring out ω’s from the row and
columns and have an explicit formula for relating the
two principle minors. Here is the formula:

det(W I
N) =

r∏
i=0

ωai

r∏
i=1

ωai−a0det(W I0
N )

Theorem
(Principal Vandermonde Submatrices)Let WN be the
N × N DFT matrix and let G = ⟨ω⟩ and let k = |H |
where H is a subgroup of G . The principal submatrix,
W I

N, associated to the indices,
I = {0,N/k, . . . , (k − 1)N/k} is Vandermonde.

For this we used Lagrange’s theorem and saw that this
selection of columns makes a Vandermonde matrix. The
proof follows from the selection of column indices and
the fact that all of the subgroups will be cyclic.
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Numerical Findings
We have verified the conjecture up to N = 30.

We have also computed the total number of valid
permutations for up to N equals 12: {(4 : 16), (6 : 144), (8:
2304), (9, 46656), (10, 43400), (12, 38880)}. Note that if
N is prime then Chebotarev’s theorem says the number of
valid permutations is N!.

We observe that if N = pq, p, q distinct primes then the
identity permutation appears to work.

Conclusions/Future Work
We seek to prove the following conjectures.
Conjecture 2. if N = pq, p, q distinct primes then every
principal minor of WN is nonzero. This conjecture is informed by
numerical evidence.
Conjecture 3. If N = pk, p prime then there is an explicit
permutation σ that satisfies the Main Conjecture. Here we hope
to leverage the Tao/Evans-Isaacs formula.
Future work will include checking the Main Conjecture for larger
integers and explore the above conjectures. We have begun to
build the techniques to prove/disprove this conjecture and to find
the limits of the current techniques [1][2].
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