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Introduction
Quantum computing is a type of computing that uses quantum
phenomena to perform operations on data. Unlike classical
computers which use bits (0s and 1s) for processing, quantum
computers use quantum bits, which can exist in multiple states
simultaneously. This allows them to solve problems much faster
than traditional computers.
We mostly focus on the Negative Sign Problem. The Negative
Sign problem is a numerical stability issue resulting in inefficient
statistical sampling.

Some Definitions

Definition (Markov Chains)
Markov chains are mathematical models used to predict a
system’s future behaviour based on its current state and not its
past history.
Mathematically, if Xn represents the state of the Markov chain at
step n, the Markov property can be written as: P(Xn+1 = x |X1 =
x1,X2 = x2, ...,Xn = xn) = P(Xn+1 = xXn = xn)

Definition ( Quantum Monte Carlo)
Quantum Monte Carlo (QMC) methods are a set of
computational algorithms used to evaluate complex integrals in
high-dimensional spaces, where traditional numerical methods are
ineffective.
These methods use stochastic sampling techniques, drawing on
concepts from probability and statistics, to estimate the value of
integrals.

Definition (Hoeffding’s Inequality)
This is a powerful tool in the analysis of random sampling
methods, including QMC, providing a mathematical foundation
for understanding and controlling the errors in stochastic
estimation process.
Suppose X1,X2, ...,Xn are independent random variables, each
bounded by an interval [ai , bi ]. Let X = 1/n(X1 + X2 + ... + Xn)
be the sample mean, and E [X̄ ] be the expected value of X̄ .
Hoeffding’s Inequality states that for any t > 0:

P(|X̄ − E [X̄ ]| ≥ t) ≤ 2 exp
(
− 2n2t2∑n

i=1(bi−ai)2

)

Ising Model & Metropolis Hastings

The Ising model is a grid-based mathematical framework
used to study how individual elements, called spins,
interact with their neighbours. Each spin can be either
up (+1) or down (-1). The model calculates how these
spins align or oppose each other under various conditions
The Hamiltonian of the system is given by
H(σ) = −

∑
⟨ij⟩ Jijσiσj − µ

∑
j hjσj

J represents the interaction strength, σi and σj are the
spin values, and h is the external magnetic field.
The probability of a configuration is given by the
Boltzmann distribution Pβ(σ) =

e−βH(σ)∑
σ e
−βH(σ)

The Metropolis-Hastings algorithm is a Markov Chain
Monte Carlo method used to sample from complex
probability distributions.

Algorithm Metropolis-Hastings Algorithm for Ising
Model
1: Initialize a configuration σ
2: for t = 1 to T do
3: Generate a candidate σ′ by flipping the spin of a
randomly chosen element

4: Calculate the acceptance ratio α = H(σ′)
H(σt)

5: Generate a random number x ∼ Uniform(0, 1)
6: if x < α then
7: Accept the candidate σt+1← σ′

8: else
9: Reject the candidate σt+1← σt

10:

Negative Sign Problem

The negative sign problem is a computational issue
encountered primarily in simulations that involve
summation or integration over a large number of terms,
where these terms can have both positive and negative
values.
When performing a Monte Carlo simulation, we
compute expectation value of an observable Q:

⟨Q⟩ =
∑

C |w(C )|sign(C )Q(C )∑
C |w(C )|

=

∑
C |w(C )|sign(C )Q(C )/

∑
C |w(C )|∑

C |w(C )|sign(C )/
∑

C |w(C )|

=
⟨sign(C )Q(C )⟩MC

⟨sign(C )⟩MC∑
C

|w(C )| = Z

The sign-problem manifests as a cancellation of positive
and negative contributions in the partition function,
making statistical sampling inefficient.

The statistical sampling becomes inefficient due to
numerical instability caused by the denominator being
very close to zero. As the denominator approaches zero,
the calculations diverge.
let N be a constant:

lim
D→0−

N

D
= −∞

lim
D→0+

N

D
=∞

lim
D→0

N

D
= DNE

Symmetry
Solving the Negative Sign Problem includes several methods. We
mostly focus on the symmetry-based method.
By identifying symmetries in the problem, one can transform the
sum or integral in a way that reduces the impact of negative
contributions. Symmetry considerations might lead to a
redefinition of the problem space where the negative sign problem
is less severe.
In certain cases we can find a D such that DHD−1 results in a
similar Hamiltonian, which in our case means a Hamiltonian with
equivalent eigenvalues.

Conclusions/Future Work
The negative sign problem is a common bottleneck in quantum
computing research. If we can discretely characterize cases where
the negative sign problem manifests, and find which methods to
ease or cure the problem are optimal for some of those cases, we
could facilitate the completion of many existing research papers.
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