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Introduction
We investigate lowest-energy floating configurations of
3D-printed objects with a polygonal cross-section of uniform
density along an axis involving gravitational, buoyant, and surface
tension forces. We extend Archimedes Principle to include fluid
volume of the meniscus to account for surface tension in the
force balance equation.

Forces Acting on a Floating Object
The orientation of a stationary object satisfying the parameters
above may be characterized by the balance of gravitational force,
buoyant force, and surface tension force.

Mathematically, this may
be written:

0 = F⃗g + F⃗p + F⃗T

With forces defined below:

F⃗g = Mobj g⃗

F⃗p = ℓρf g
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F⃗T = ℓγLt⃗L + ℓγR t⃗R

Potential Energy of the System
The potential energy of a system may be determined from the
energy corresponding to each of the above forces. Consider some
constant point on the boundary of the object, x⃗ . Then call some
angle between x⃗ and the waterline θ. Equilibrium floating
configurations occur at an angle θ, for which U(θ) has minima.

U(θ) = PEG + PEB(θ) + ∆E (θ)
The definitions for each of the above three terms are still being
developed.

Bond Number and Relevance of Meniscus
The Bond Number, B0, is a dimensionless parameter used to
compare the magnitude of the gravitational and surface tension
forces experienced by a floating object at a phase interface.

B0 =
∆ρℓ2g

γ
where ∆ρ = ρfluid-ρobject, ℓ is the length scale of the object, g is
acceleration due to gravity, and γ is the surface tension constant.

Archimedes Principle and Surface Tension
The buoyant force acting on an object floating in a fluid is equal and opposite to the force of gravity acting on the
object. This is written:

Mobjg = ρf ℓAsubg .

If the bond number is sufficiently large, then surface tension becomes negligible. Otherwise, the fluid displaced from
the waterline significantly contributes to the buoyant force and the area of the meniscus must be accounted for in Asub.

Shape of the Meniscus

Contact Angle
Equilibrium contact angle, α, is intrinsic to a system of a solid intersecting a phase interface at 90◦. That is, contact
angle is measured such that the object is essentially a vertical wall. α is determined from reliable experimental data.
The expected direction of a meniscus can therefore be predicted from α relative to 90 ◦. If α < 90◦, the meniscus is
upward. If α > 90◦, the meniscus is downward.
The lowest-energy, or equilibrium, floating configuration of an object is therefore one in which the contact angle is
equal to α at all waterline contact points.

Three Possible Cases of Menisci at an Object
Intersecting the Phase Boundary at Two Points

Blue: Increases amount of water displaced, stronger
buoyant force
Red: Decreases amount of water displaced, weaker
buoyant force

Evaluating Cross Sectional Area of Displaced Fluid:
The Trapezoid Method
For Asub computation, five relevant bounded regions of
the cross section are shown below:

Function Describing the Meniscus

An ODE for the height of a liquid surface may be
derived from the normal vector at the surface of the
liquid, n̂ and the pressure of a static fluid, p(h) [2].
For the case where y0 = 0.8 and d = 1√

2
, the

meniscus may be plotted:

Differential Equation for Meniscus Height
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Meniscus Height Function
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Case Study: Flotation of the Mason ”M”
The print of the Mason ”M” floating in water on the right
depicts an example of a case where many different kinds of
menisci may occur at the equilibrium floating configuration.

Future Work
1 Implement these principles in existing code to find stable
floating orientations for objects experiencing non-negligible
surface tension

2 Adapt the model to predict floating configuration for an
object that intersects the phase interface more than two
times

3 Further investigate cases when menisci form at sharp corners
4 Further investigate the possibility of multiple stable
configurations existing for each rotational orientation

5 Apply these findings to 3D-printed objects that float on top
of a liquid without breaking its surface, as seen in certain
insect species
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