The Dirichlet Problem [5][6]	Com
Definition	Cons
A real-valued function u on an open subset $\Omega \subseteq \mathbb{R}^n$ is harmonic	on th
f it is	the r
twice continuously differentiable, and	H(z)
2 the Laplacian of u , defined $\Delta u = \partial^2 u / \partial x_1^2 + + \partial^2 u / \partial x_n^2$,	R on
is 0 throughout Ω .	$\mathbf{x} =$
On some domain Ω , given data on the boundary, can we find a	comp
narmonic polynomial that matches the data on the boundary?	
ts main applications are in the physics of heat flow,	h is a
electrostatics, and other fields.	Wec
General Solution in the Disk [5][6]	funct
On disks centered at the origin, with boundary function 1, the	alrea
Solution to the Dirichlet Problem is found in general by the	anu s dick
oisson milegrai.	$n \in \mathcal{I}$
$1 \int_{-\pi}^{\pi} \begin{bmatrix} R^2 - r^2 \end{bmatrix} = \frac{1}{\tau} (0) = 10$	
$u(a) = \frac{1}{2\pi} \int_{-\pi} \left[\frac{R^2 + r^2 - 2Rr\cos(\theta - \alpha)}{R^2 + r^2 - 2Rr\cos(\theta - \alpha)} \right] I(\theta) d\theta,$	
where any point in the disk $a = re^{ilpha}, (r < R)$.	Note
Schwarz Interpretation [5]	boun
On disks in particular there is a visual interpretation of the	the s
Poisson Integral. Take the boundary data and reflect it across a	obtai
given point a. A weighted average of the points on the reflected	descr
circle will equal the value of the solution to the Poisson Integral.	this I
	R(x,
	h(z)
	what
	the r

Contormal Maps

Let Ω be a domain in the plane such that there exists a conformal map $\varphi: \Omega \to D$ with $\varphi(\Omega) = D$, if we find a solution u to the Dirichlet problem to boundary data $R \circ \varphi^{-1}$ (on the unit disk), where R is the original boundary data function, $\varphi \circ u$ will still be harmonic, and a solution to the Dirichlet problem with the original parameters.

The Dirichlet Problem on Select Subsets of \mathbb{R}^2

George Andrews, Justin Cox, Violet Nguyen Advisors: Gabriela Bulancea, Abigail Friedman

Mason Experimental Geometry Lab

May 6, 2022

plex analytic approach [1][6] Fischer's sider the boundary data given by a rational function R(x, y) The oper he boundary of the unit disk ∂D . Objective: It is known that $L(f) = \Delta$ real part of an analytic function is harmonic. We wish to find linear deg analytic on the disk D such that the real part of H equals polynom the boundary ∂D . Use the change of coordinates construc $(z + \overline{z})/2$ and $y = (z - \overline{z})/2i$ to obtain a function of one region Ω plex variable h(z) = R((z+1/z)/2, (z-1/z)/2i).a rational function continuous on ∂D and equal to R on ∂D . Examp can decompose h into a sum of a polynomial and a rational Suppose tion in z: h(z) = p(z) + s(z). As a polynomial, p(z) is polynom ady analytic. However s(z) may have poles inside the disk, basis of so requires modification by reflecting the poles outside the For each term $k_m(z) = a/(z-c)^{n_m}$ in s(z) where $a, c \in \mathbb{C}$, \mathbb{Z}^+ , and |c| < 1, replace with the Kelvin transform $K(z) = \overline{k(1/ar{z})} = rac{ar{a}z^n}{(1-ar{c}z)^n}$ that the real parts of K(z) and k(z) are equal on the ndary, so the values of their real parts on the boundary stay same. Define the function H(z) = p(z) + S(z) where S(z) is Then we ined from s(z) by replacing each term k(z) with K(z) as receive ribed before. Our solution u = Re H. One can show using method that if R is a polynomial, so is u. If we let Homoge y) = 1/(5+3x), then using this method gives us a function In the ca = (1/4)/(3z+1) + (3/4)/(z+3). The below figure shows directly of happens to the pole inside the unit disk at z = -1/3 under way of ha Kelvin transform: it gets moved outside to z = -3. be uniqu

Fischer's Lemma and an algebraic solution [2][4]	Extending L
The operator $L: \mathbb{P}[x_1, \ldots, x_n] \longrightarrow \mathbb{P}[x_1, \ldots, x_n]$ defined by $L(f) = \Delta(qf)$, where $q(x_1, \ldots, x_n) = \sum_{k=1}^n x_k^2/r_k^2$ for $r_k > 0$. is a linear degree-preserving bijection from the space of real-valued polynomials of degree at most m to itself. This allows us to construct an algebraic solution to a Dirichlet problem over some region Ω whose boundary is given by q :	We are able to boundary date functions with that <i>L</i> , when one-to-one. Indeg $\widetilde{P} \leq \deg$
$u = f - q \cdot L^{-1}(\Delta(f)) \tag{3}$	When restric we are able t
Suppose we have a Dirichlet problem over the unit disk with polynomial data given by $f = y^2$. When constructing the vector basis of $L: \mathbb{P}_2[x, y] \longrightarrow \mathbb{P}_2[x, y]$, we receive	in particular,
$[L] = \begin{bmatrix} 4 & 0 & 0 & -2 & 0 & -2 \\ 0 & 8 & 0 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 14 & 0 & 2 \\ 0 & 0 & 0 & 0 & 12 & 0 \\ 0 & 0 & 0 & 2 & 0 & 14 \end{bmatrix}$	is a linear, densities of the self. Indeed show that H_r $\mathcal{H}_m(\mathbb{R})$ is an Discrete Pois
Then we compute $[L^{-1}] = [L]^{-1}$ and apply the form in (3) to receive $u = y^2 - \frac{1}{2}(x^2 + y^2 - 1)$.	In the polync Poisson integ induction for
Homogeneous polynomial boundary data [3][6] In the case of homogeneous polynomial data, we are able to directly compute a solution to the Dirichlet problem on a disk by way of harmonic decomposition. That is, every $p \in \mathcal{P}_m(\mathbb{R})$ can be uniquely written in the form $\lfloor \frac{m}{2} \rfloor$	Vandermond The solution is polynomial defined $u(z)$ coefficients o (2m + 1) by matrix is a V
$p = \sum_{k=0}^{n} x ^{2k} p_{m-2k} $ (4) where $p_k \in \mathcal{H}_k(\mathbb{R})$ for every k . It then follows that, if p is the	Further direc Can we get the formula
boundary data function in a Dirichlet problem, then the solution to said Dirichlet problem, <i>u</i> , is given by	We would lik their guidance
$u = \sum_{k=0}^{\lfloor \frac{m}{2} \rfloor} p_{m-2k} $ (5)	 [1] Gorkin Pamela, Smith October 2005. [2] Baker John A. The Di [3] Axler Sheldon, Ramey - 3773 [4] Gonzales Claudio. Poly [5] Needham, Triston Vision

to the case of rational boundary data

to extend the use of L to the case of rational ta by introducing a restriction to rings of rational h a fixed denominator polynomial. However, we find applied to this restriction, is not necessarily In particular, for L(P/Q) = P/Q, it is the case that $P + 2 \deg Q$ and $\deg Q = 3 \deg Q$.

he domain of L to homogeneous polynomials ting the domain of L to homogeneous polynomials, o preserve the properties stated by Fischer's lemma. we find that

$$L: \bigoplus_{k=0}^{\lfloor \frac{m}{2} \rfloor} \mathcal{P}_{m-2k}(\mathbb{R}) \longrightarrow \bigoplus_{k=0}^{\lfloor \frac{m}{2} \rfloor} \mathcal{P}_{m-2k}(\mathbb{R})$$
(6)

egree-preserving bijection from $\bigoplus_{k=0}^{\lfloor \frac{m}{2} \rfloor} \mathcal{P}_{m-2k}(\mathbb{R})$ onto we can use this preservation of Fischer's lemma to $_{n}(\mathbb{R})$ is invariant under L, since each vector in eigenvector with eigenvalue 4(m+1).

son integral formula at the origin of the unit disk omial data case, we can get a discrete sum from the gral formula for the value at the origin using the mulae for products of sines and cosines.

e Matrices

to the Dirichlet problem on the disk when the data of degree *m* is the real part of an analytic function $=\frac{1}{2}\sum_{k=0}^{m} (c_k z^k + \bar{c_k} \bar{z}^k)$. We can determine the f u(z) from its values at the roots of unity of order solving a linear system for which the coefficient andermonde matrix with complex entries.

get a discrete sum version of the Poisson integral for points other than the origin using interpolation?

ements

te to thank Dr. Bulancea and Abigail Friedman for throughout the course of the project.

Joshua H. Dirichlet: His Life, His Principle, and His Problem, Mathematics Magazine. Vol. 78, No. 4 richlet problem for ellipsoids, Amer. Math. Monthly 106:9. 1999, 829-834

Wade. Harmonic polynomials and Dirichlet-type problems, Proc. Amer. Math. Soc. 123:12. 1995, 3765 ynomials in the Dirichlet Problem, University of Chicago REU participant papers. 2014

sual Complex Analysis, Oxford University Press. 1997. ISBN: 0 19 853447 7 [6] Axler Sheldon, Bourdon Paul, Ramey Wade. Harmonic Function Theory, Springer Graduate Texts in Mathematics. GTM 137 2000. 2nd Ed. ISBN: 0-387-95218-7