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The Research Question

Definition

A polyform is a figure constructed by joining together identical polytopes
connected by at least one of their faces.

Random 3D Polyforms

Specifically, we are studying random polyforms composed of strongly
connected cubes. Every cube is connected by a path of cubes sharing two
dimensional square faces. We’re interested in studying how the geometry
of the polyforms change with respect to how the polyforms are generated.
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Some visualizations of polyforms
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Some visualizations of polyforms
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Cubical Complex

Elementary Cube

An elementary cube, Q is the finite product of elementary intervals Ii :

Q = I1 × I2 × ...× In ⊂ Rn

Set of Cubes

The set of all elementary cubes in Rn by κn and the set of all elementary
cubes as:

κ =
∞⋃
n=0

κn

A cubical complex is a set of vertices, edges, squares (faces), cubes, and
their n-dimensional counterparts. a

aDaniel Strombom (2007)
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Betti Numbers

Definition

We can think of the kth Betti number as the number of k-dimensional
holes of a topological surface, i.e the rank of the homology group.

In the example of the torus, b0 is the number of connected components
(1), b1 is the number of 1d holes (2), and b2 is the number of 2d voids (1).
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The Work Flow

1 Generate a random point cloud with n-number of points.

2 Use the MH Algorithm to shuffle the points m-times.

3 Use the point cloud to generate the cubical toplex and construct the
faces and sufaces from the top dimensional cube.

4 Use tools in Persistence Theory to compute the homology of the
generated cubical complex. 1

5 Study how the homology changes with respect to how the polyforms
are generated.

1Mischaikow & Nanda (2013)
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Metropolis Hastings Algorithm

1 Set A = L, where L is the ”line” polyform with n cubes in a row.

2 Select a cube in A uniformly at random. Call it x .

3 Remove the cube x from A creating a polyform with n − 1 cubes,
A \ {x}.

4 Now select cube in the site perimeter of A \ {x} uniformly at random,
call it y .

5 Place a cube at y . The new structure created is (A \ {x}) + {y}. If
(A \ {x}) + {y} is a valid polyform (β0 ̸= 1) then update
A = (A \ {x}) + {y} and go to Step 1. If (A \ {x}) + {y} is not
valid, do not update A and return to Step 1.

Visualization of the Shuffle
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Sampling from the Uniform Distribution
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What about other distributions?

Conditional Densities

We can move simulate a target density πp by modifying the previously
mentioned MH-Algorithm. We use the conditional density given by the
following:

p(A1,A2) = min{(1− p)t2−t1 , 1}

where t1 and t2 are the site perimeters of A1 and A2 respectively. At p =
1, we reject every valid polyform immediately, and thus no homology is
generated. At p = 0, we accept every valid polyform, thus sampling from
the uniform distribution. a

aRoldan (2018)
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Metropolis Hasting Algorithm, Modified

1 Set A = L, where L is the ”line” polyform with n cubes in a row.

2 Select a cube in A uniformly at random. Call it x .

3 Remove the cube x from A creating a polyform with n − 1 cubes,
A \ {x}.

4 Now select cube in the site perimeter of A \ {x} uniformly at random,
call it y .

5 Place a cube at y . Define B = (A \ {x}) + {y}. If B is not a valid
polyform, go to step 1. Else, with acceptance probability p(A,B), set
A = B and go to Step 1, with rejection probability 1− p(A,B), do
not change A and go to Step 1.
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Results for n = 100
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Future Work

We’ve made a lot of progress this semester, namely in computing
homology, finding Big O for our shuffles, and improving the computational
speed of our algorithms. Our initial data, while promising, still hasn’t
reached the sample sizes required to answer some key questions we have
so in the future we plan on.

Generate even larger data sets to look at limiting distributions.

Find a pattern for the ideal number of shuffles, as mixing time is still
an open problem in both the 2d and 3d case. The current guess is
that mixing time in the 2d case is somewhere between n2 and n3

shuffles.

Look for new and more efficient ways of shuffling polyforms, whilst
still maintaining the desired distributions.
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Thanks

We’d like to thank Dr. Schweinhart and Dr. Roldan for their invaluable
guidance and knowledge they’ve provided us during this project. We’d also
like to express our gratitude to Shrunal Pothagoni and Aleyah Dawkins for
being our graduate mentors and MEGL for support our research. We’re
excited to continue next semester!
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