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Inspiration for Research

Bramburger & Henderson Research in FKPP-Burgers system [1]

Coupled reaction-advection-diffusion system with a large parameter ρ

Traveling wavefront solutions only exist for some wave speeeds c̃

(T , u) = (T (x − c̃t),U(x − c̃t))

For a given ρ, the set of admissible speeds is [c∗(ρ),∞)

Theorem: (32)
1/3 ≤ lim infρ→∞

c∗(ρ)
ρ1/3

≤ lim supρ→∞
c∗(ρ)
ρ1/3

≤
√
3

(Bramburger & Henderson 2021)

Theorem: limρ→∞
c∗(ρ)
ρ1/3

= 3

√
3
2 (HKMTW)
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ODE’s, Re-scaling and Desingularization

The system of ODE’s derived by Bramburger & Henderson

Ṫ = −c̃T + UT + 1
2ρU(2c̃ − U)

U̇ = ρ
U−c̃T (1− T )

We’ll use the following re-scaling, ε3 = 1
ρ , c = c̃

ε , and W = Uε to

change coordinates and rescale time

T ′ = εṪ

T ′ = −cT +WT + 1
2W ε2(2c −W )

W ′ = 1
W−cT (1− T )
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Rescale, Reduce, Desingularize

Singularity at W = c

Multiply by c −W to desingularize

T ′ = −T (c −W )2 + 1
2ε

2W (2c −W )(c −W )

W ′ = −T (1− T )

Consider only the ε = 0 case

T ′ = −T (c −W )2

W ′ = −T (1− T )

Fixed points at (0, 0) and (1, c) found by inspection
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Heteroclinic Orbits

When working with differential equations, where is the rate of change
zero?

Solution connecting an unstable fixed point and a stable fixed point.
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Hyperbolicity

With hyperbolic fixed points, reduced linear dynamics will
approximate non-linear dynamics

With non-hyperbolic fixed points, reduced linear dynamics may not
approximate non-linear dynamics

(See Hartman-Grobman Theorem for more details)
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Relating T and W (ε = 0)

A separable ODE is found by relating the two derivatives(” ′ ” being
d
dτ )

dW
dT = dW/dτ

dT/dτ = 1−T
(W−c)2

Solving this using separation of variables, an explicit function of
W (T ) is found

W (T ) = c + 3

√
3
2 (1− T )2 + K
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Solving for c

From the separation of variables step, we obtained the equation

1
3 (W − c)3 = − 1

2 (1− T )2 + K , where K is the integration constant.

If a heteroclinic orbit exists, use the fixed points (0, 0) and (1, c) as
boundary conditions
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Solving for c

Using the point (1,c), find K

1
3 (c − c)3 = − 1

2 (1− 1)2 + K

K = 0

Using the point (0, 0), find c

1
3 (0− c)3 = − 1

2 (1− 0)2 + K

c = 3

√
3
2

So our theorem is true!

...if we assume a heteroclinic orbit exists...
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Graphic Illustration of Heteroclinic orbit connecting to
non-hyperbolic fixed point at c

The fixed point, (1, c) is non-hyperbolic, so more advanced techniques will
be needed to recover hyperbolicity
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Implicit Function Theorem

How do we know if a heteroclinic orbit exists?

There will be solutions passing through one fixed point, but what
about two?

Implicit Function Theorem! An implicit function exists if:

Can construct some Φ(c , ε) with Φ(c∗, 0) = 0 along some section
Σ = {(T ,W ) : T = 1

2}

The parameters c , ε are smooth along these sections

∂Φ
∂c (c

∗, 0) ̸= 0 along Σ
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Defining Φ

Let hs be a solution through the stable fixed point

Let hu be a solution through the unstable fixed point

We have a heteroclinic orbit when hs is hu, so let

Φ(c , ε) = hs(c , ε)− hu(c, ε)

So we have a heteroclinic orbit if we can show that this Φ is zero.

Easy to show Φ = 0 when fixed points are hyperbolic

But (1,c) is non-hyperbolic, so more advanced techniques are needed
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’Blow-up’ at Non-Hyperbolic Fixed Point (1,c)

’Blowing-up’ the (1,c) fixed point into an ellipsoid projected onto three
planes to analyze. First, we must re-center the origin via the following
translation: W̃ = W − c and T̃ = T − 1

Resulting equations after translation:

T̃ ′ = −W̃ 2(T̃ + 1)− 1

2
W̃ ε2(c2 − W̃ 2)

W̃ ′ = T̃ (T̃ + 1)

Once the origin is translated, the coordinates (T̃ , W̃ , ε) will be mapped via
a quasi-homogeneous blow up to (r , θ, φ) in the following way:
T̃ = r2cosθsinφ, W̃ = rsinθsinφ, and ε = cosφ

M T W K H (George Mason University, MEGL) Geometric Desingularization December 2 2022 13 / 21



Geometric Picture of Quasi-Homogeneous Blow-up
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Analyzing Dynamics on the Ellipsoid

Three fixed points vs one

Projective charts instead of spherical coordinates for easier analysis

Trapping region to ensure connection

In the following section, we show the analysis of the charts and
construction of the trapping region
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Chart kW

Change of coordinates: ε = ε1r1, W̃ = −r2, T̃ = T1r
3
1

The equations in this chart:

T ′
1 =

3

2
T1 + 1− ε1c

2

2

ε′1 =
ε2T1

2
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Chart kT

Change of Coordinates: ε = ε2r2, W̃ = r22W2, T̃ = r32

The equations in this chart:

ε′2 =
1

3
ε2W2(W2 +

1

2
ε22c

2)

W ′
2 = 1 +

2

3
W 2

2 (W2 −
1

2
ε22c

2)
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Chart kε

Change of coordinates: ε = r3, W̃ = r23W3, T̃ = T3r
3
3

The equations in this chart (Hamiltonian):

T ′
3 = −W 2

3 +
1

2
W3c

2

W ′
3 = T3
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Satisfying Implicit Function Theorem

When a heteroclinic orbit exist, hs and hu are identical, so Φ(c , ε) is
zero if and only if a heteroclinic orbit exists.

We have shown that the Φ(c , ε) is zero along the section when
T = 1/2.

Also, by regaining hyperbolicity, it is shown the Φ is smooth in
parameters.

The implicit function theorem is satisfied, therefore, our heteroclinic exist
in the full system!
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Conclusion

Because of the implicit function theorem, we know that a heteroclinic
orbit exist.

The limit as ε → 0 is equivalent to ρ → ∞ in the original scaling.

This proves our theorem stated at the beginning, that the minimum

wave speed as ρ → ∞, c̃ = 3

√
3
2
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