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Introduction - S The Work Flow Conclusions/Future Work
A polyform is a figure constructed by joning together |c.le.nt|ca| © Generate a random point cloud with n-number of What about other distributions? - We've made a lot of progress this semester, namely in computing
polytopes connected by at least one of their faces. Specifically, we boints. We can move simulate a target density 7, by modifying homology, finding Big O for our shuffles, and improving the
are studying randor_n polyforms composed of strongly co.nnected @ Use the MH Algorithm to shuffle the points the P.r?ViOUSW m_entic.med MH—AIgorithm. We use the computational speed of our algorithms. Our initial data, while
cubes. Every cube is connected by d path of cubes sharlng two T R conditional denS|ty given by the fO”OWIﬂg: promising, still hasn't reached the Sample S|1ZesS required to

dimensional square faces. We're interested in the homology of @ Use the point cloud to generate the cubical toplex answer some key questions we have so in the future we plan on.

polyforms, such as the number of holes of such generated shapes.! and construct the faces and sufaces from the top p(A1, A)) = min{(1 — p)2 4,1} o Generate even larger data sets to look at limiting
Visualization of a 3d Polyform dimensional cube. where t; and t, are the site perimeters of A; and A, distributions.
@ Use tools in Persistence Theory to compute the .respect.ively. At p = 1, we reject every valid polyform @ Find a pattern for the ideal number of shuffles, as mixing
homology of the generated cubical complex. immediately, and thus no homology is generated.. At p time is still an open problem in both the 2d and 3d case.
@ Study how the homology changes with respect to =0, we accep_t every valid polyform, thus sampling from The current guess is that mixing time in the 2d case is
the uniform distribution. , somewhere between n? and n° shuffles.

how the polyforms are generated.

@ Look for new and more efficient ways of shuffling polyforms,

More Work _ _ _ _ _ _ . whilst still maintaining the desired distributions.
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Definition (Betti Numbers)

Definition
We can think of the kth Betti number as the number of
k-dimensional holes of a topological surface, i.e the rank of the

homology group.
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In the example of the torus, by is the number of connected
components (1), by is the number of 1d holes (2), and b, is the
number of 2d voids (1).
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