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Introduction
The aim of this project is to study dynamical systems of
polynomials. We replace indeterminants in a multivariate
polynomial with degree-1 polynomials with coefficients from the
rows of invertible matrices over finite fields. We are broadly
interested in the system’s “level of stability” and the “size of the
orbits”. More specifically we attempt to:

1 Find a general form for the fixed points.
2 Find out what variables we can tweak in the problem setting
to ensure or eliminate fixed points.

3 Find polynomials that achieve maximum orbit cardinality.
4 Describe the dynamical system’s structure for each degree d .

Foundational Definitions

Definition (Fields, Polynomials, and Matricies)
1 General fields are denoted F, and a finite field with
cardinality q is denoted Fq.

2 The set of polynomials in m variables over a field F is
F[x1, · · · , xm]. Those with degree at most d are denoted
Pm,d(F), or P∗

m,d if 0 is removed. The subset of degree d
homogeneous polynomials—polynomials that only contain
degree d terms—is written as Hm,d(F).

3 The collection of m ×m matrices over a field F is denoted
Mm(F). The invertible matrices are denoted GLm(F).

Definition (Group Actions)
A group is a set G with an operation · : G × G → G that is
associative, has an identity element, and has per-element
inverses. Given any set X , the collection of permutations on
its elements—denoted SX—is a group.

A homomorphism φ : G → H is a function between two
groups (G and H) that preserves their operation, in that
φ(g1 · g2) = φ(g1) · φ(g2).
Given a group G and a set X , an action of G ⟲ X is a
homomorphism φ : G → SX .

Given an action G ⟲ X , the orbit of x ∈ X is the set
OrbG(x) = {g · x : g ∈ G}. The collection of orbits is
denoted X/G . If there is a single orbit, it is said to be
transitive.

Given an action G ⟲ X , the stabilizer of x ∈ X is the set
StabG(x) = {g ∈ G : g · x = x}. If StabG(x) = G , then x is
said to be a fixed point.

Definition (How to Replace Indeterminants)
1 We define an action GLm(F) ⟲ F[x1, . . . , xm] by, if g ∈ GLm(F) has form g =

r
gij

z
and f ∈ F[x1, . . . , xm] has

form f =
∑

α∈Nm λαx
α1
1 · · · xαm

m , then g−1 · f =
∑

α∈Nm λα(
∑m

j=1 g1jxj)
α1 · · · (

∑m
j=1 gmjxj)

αm.

Summary

The action is linear and degree preserving over finite
fields—in fact it permutes the degree d
homogeneous polynomials.

The orbits and stabilizers of the polynomials of
Pm,d=1 are known.

Fixed points are rare.

To have f ∈ Pm,d with |OrbGLm(Fq)(f )| =
|GLm(Fq)|, it is sufficient to let d > m.

There is... so much code.

There is a truly frightening amount of code
documentation.

Some Details

Structure of the Action:
When working with any field F, one can prove via
induction that GLm(F)’s action permutes the degree d
homogeneous polynomials (∀d ∈ N). Then since the
action is linear, the orbit of a polynomial f is determined
entirely by the orbits of its homogeneous components.

Orbits in the Degree d = 1 Case: (Finite Field)
All elements of Hm,d=1(Fq) belong to a single orbit.
Since (g · g−1)f = f for all g ∈ GLm(Fq) and
f ∈ Fq[x1, . . . , xm], this (mostly) resolves to checking
that for every h ∈ Hm,d=1, there is g ∈ G for which
g−1 · x1 = h. But g−1 · x1 =

∑m
j=1 g1jxj ,

so this resolves to confirming that for every ordered
selection of field elements, there is an invertible matrix
with that selection as a row. The linearity of the action
and fixture of constants finish the orbit description.

Stabilizer Subgroups of Actions:
Given an action G ⟲ X and an element g ∈ G , the
stabilizer subgroup of g · x is given by
g−1 StabG(x)g = {ghg−1 : h ∈ StabG(x)}. If
k ∈ g StabG(x)g

−1, then k = ghg−1 h ∈ StabG(x) , so
k · (g · x) = (ghg−1g) · x = (g · (h · x)) = g · x . By this
same argument, if h ∈ StabG(gx), then
g−1hg ∈ StabG(x), so g(g−1hg)g−1 ∈ g StabG(x)g

−1.

This is useful as it gives an isomorphism between
stabilizer subgroups of “set elements” in the same orbit.
It is especially nice when all elements belong to a single
orbit. In particular StabGLm(Fq)(f ) can be found from
StabGLm(Fq)(x1), for all f ∈ Hm,d=1(Fq).

Maximizing Orbits: (Finite Field)

If a non-identity g−1 ∈ GLm(Fq) is diagonal, its action
changes coefficients, but “fixes” monomials, and so
x1 + · · · + xm will be moved by g−1. If the g−1 has
off-diagonal entries on some row i , it won’t fix any
power of the monomial xi . Thus,
|OrbGLm(Fq)

(∑m
i=1 xi +

∑m
i=1 x

i+1
i

)
| = |GLm(Fq)|.

Fixed Points: (Finite Field)
For f ∈ Fq[x1, . . . , xm] to be fixed, it is necessary that
every exponent αi of every term λxα1

1 · · · xαm
m be a

multiple of |Fq − {0}|, or else we can engineer a
diagonal matrix that fixes monomials but changes λ.
This is not a sufficient condition—in fact no element of
Hm=2,d=3(F2) is fixed. (see graph to right)

Example for Orbit Traversal, d = 1 and q = 3 Case

Future Work
1 Read Robert Steinberg’s On Dickson’s Theorem on
Invariants (it may solve the fixed point part of our project).

2 Finish transition of code from Python to C.
3 Full classification of the degree d = 2 case.
4 Sharpen conditions on occurrence of cardinality |GLm(Fq)|
orbits.

5 Explore the dynamics induced on polynomial roots.
6 Explore the behavior of the orbits for large m, d ,& q.
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