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Introduction
We are interested in heteroclinic orbits for the following system when p — oc
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Change variables and desingularize using &> = %, ¢ =%, and W = Ue to obtain.
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Heteroclinic orbits with wave speeds ¢ > c¢*(p) correspond to traveling waves in the
solution.(Bramburger & Henderson). A minimum wave speed for the system under the p
scaling is bound in the below theorem. The theorem presented here is that the minimum
wave speed is the lower bound.

Theorem (Bramburger & Henderson 2021)

\3/§ < lim inf C*l(g) < lim sup 20 <3 (5)
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Implicit Function Theorem to Prove Existence of Heteroclinic Orbits
A new function, CN*(g), can be found if three things are proven: First, Let

®(c,e) = hy(c,e) — hs(c, €)
Where h; is a solution curve which passes through (0,0) and h, is a solution curve which
passes through (1, c).
@ 1. Show some function, ®(c, ), can be constructed where ®(c*,0) = 0 along a
section ¥ where ¥ = {(T, W) | T =1}
@ 2. Show the parameters ¢ and £ are smooth along those sections
@ 3. Show that (g—f(c*, 0) # 0 along the section X

Heteroclinic Orbit in Reduced System (e = 0)
Solution curve from an unstable fixed point to a stable fixed point
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2 06| - We can solve the separable ODE to
M ' find ¢ = \3@ when ¢ = 0. So if a
0'2* * heteroclinic orbit exists, then

0 1 L 1 |
0 0.2 0.4 0.6 0.8 1 ~

Figure: Solution of ODE
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Hyperbolicity

Hyperbolic fixed points used to apply knowledge of linear systems to nonlinear systems.

1-D Examples
Hyperbolic

With hyperbolic fixed points,
reduced linear dynamics approximate
the non-linear dynamics
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Non-Hyperbolic

With non-hyperbolic fixed points,
reduced linear may not approximate
reduced linear dynamics

Blow-up

The fixed point (1, ¢) is not hyperbolic. We will use geometric blow-up (desingularization)

to recover hyperbolicity.

To do the blow up, a simple change of basis is done to translate the origin of our equations.

I' =T —1and W = W — ¢ The equations change to

ellipsoid. (Alverez 2011)

T = _WXT+1)—

1

W= T(T +1)

The blow up is a quasi-homogeneous blow up that will blow up our fixed point into an
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Charts

Three coordinate charts used to analyze non-hyperbolic fixed point.

kyw chart
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Change of coordinates:

T =rT
W= —r
E — N&q

Resulting equations:
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kT chart
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Change of coordinates:

= 3
I'=r
W = rz W,
E = &y

Resulting equations:
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k. chart
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Change of coordinates:

T =rT;
W = rZ W,
E = I3

Resulting equations
(Hamiltonian):
1
f = —WZ + = Wac?
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Visual Representation of Quasi-Homogeneous Blow Up
€
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This blow up shows the three fixed points that were truncated
when the small parameter, ¢, is set to zero. By projecting onto
the three charts, the top two fixed points are in a Hamiltonian
system are found in the k. chart and the remaining fixed point is
found in the k7 chart. The green arrows, along with the
diagrams of the charts, represent a trapping region for the
solution that connects the two fixed points. The trapping region
ensures that no solution can leave the region, thus, establishing
the existence of a solution that connects the two.

Satisfying Implicit Function Theorem
When a heteroclinic orbit exists, h. and h, are identical, so

®(c,e) is zero if and only if a heteroclinic orbit exists. We have
shown that the ®(c, €) is zero along the section when T =1/2.
By regaining hyperbolicity, it is shown that ® is smooth in
parameters. All conditions for the Implicit Function Theorem are
met.

Conclusion
From the implicit function theorem, we know that a heteroclinic

orbit exists and so we can express W as a function of T and
inspect CQ—V}/. The limit of ¢ — 0 is equivalent to p — o0 in the
original system. Thus, there exist traveling wave solutions for

wave speeds, ¢ > \3/§
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