Dr. Matt Holzer, Matthew Kearney, Samuel Molseed, Katie Tuttle, David Wigginton

Introduction

We are interested

We are interested in heteroclinic orbits for the following system when
$$\rho \to \infty$$

$$T' = -\tilde{c}T + UT + \frac{1}{2\rho}U(2\tilde{c} - U) \qquad (1)$$

$$U' = \left(\frac{\rho}{U - \tilde{c}}\right)T(1 - T) \qquad (2)$$
Change variables and desingularize using $\varepsilon^3 = \frac{1}{\rho}$, $\tilde{c} = \frac{c}{\varepsilon}$, and $W = U\varepsilon$ to obtain.

$$\dot{T} = -T(W - c)^2 + \frac{1}{2}W\varepsilon^2(2c - W)(c - W) \qquad (3)$$

$$\dot{T} = -T(W-c)^{2} + \frac{1}{2}W\varepsilon^{2}(2c-W)(c-W)$$
(3)
$$\dot{W} = -T(1-T).$$
(4)

Heteroclinic orbits with wave speeds $\tilde{c} \geq c^*(\rho)$ correspond to traveling waves in the solution.(Bramburger & Henderson). A minimum wave speed for the system under the ρ scaling is bound in the below theorem. The theorem presented here is that the minimum wave speed is the lower bound.

Theorem (Bramburger &

Henderson 2021)

$$\sqrt[3]{\frac{3}{2}} \leq \liminf_{\rho \to \infty} \frac{c_*(\rho)}{\rho^{1/3}} \leq \limsup_{\rho \to \infty} \frac{c_*(\rho)}{\rho^{1/3}} \leq \sqrt{3}$$

$$\lim_{\rho \to \infty} \frac{c_*(\rho)}{\rho^{1/3}} = \sqrt[3]{\frac{3}{2}}$$
(6)

Theorem (HKMTW)

$$\lim_{\rho\to\infty}\frac{c_*(\rho)}{\rho^{1/3}}=\sqrt[3]{\frac{3}{2}}$$

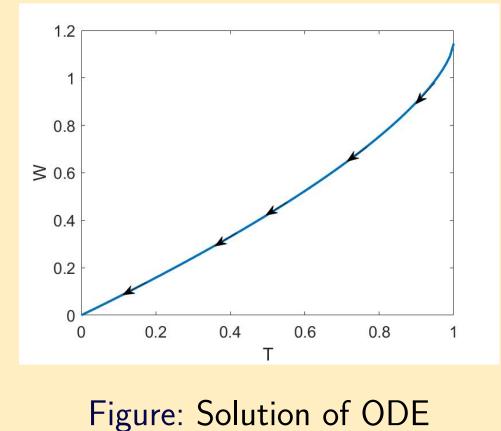
Implicit Function Theorem to Prove Existence of Heteroclinic Orbits A new function, $\tilde{c^*}(\varepsilon)$, can be found if three things are proven: First, Let

$$\Phi(c,\varepsilon) = h_u(c,\varepsilon) - h_s(c,\varepsilon)$$

Where h_s is a solution curve which passes through (0,0) and h_u is a solution curve which passes through (1, c).

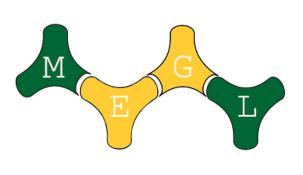
- 1. Show some function, $\Phi(c,\varepsilon)$, can be constructed where $\Phi(c,\varepsilon)$ section Σ where $\Sigma = \{(T, W) \mid T = \frac{1}{2}\}$
- 2. Show the parameters c and ε are smooth along those sections
- 3. Show that $\frac{\partial \Phi}{\partial c}(c^*, 0) \neq 0$ along the section Σ

Heteroclinic Orbit in Reduced System ($\epsilon = 0$) Solution curve from an unstable fixed point to a stable fixed point



 $\frac{dW}{dT} = \frac{1-T}{(W-\tilde{c})^2}$ (7)We can solve the separable ODE to find $\tilde{c} = \sqrt[3]{\frac{2}{3}}$ when $\varepsilon = 0$. So if a heteroclinic orbit exists, then $\tilde{c} = \sqrt[3]{\frac{3}{2}}.$

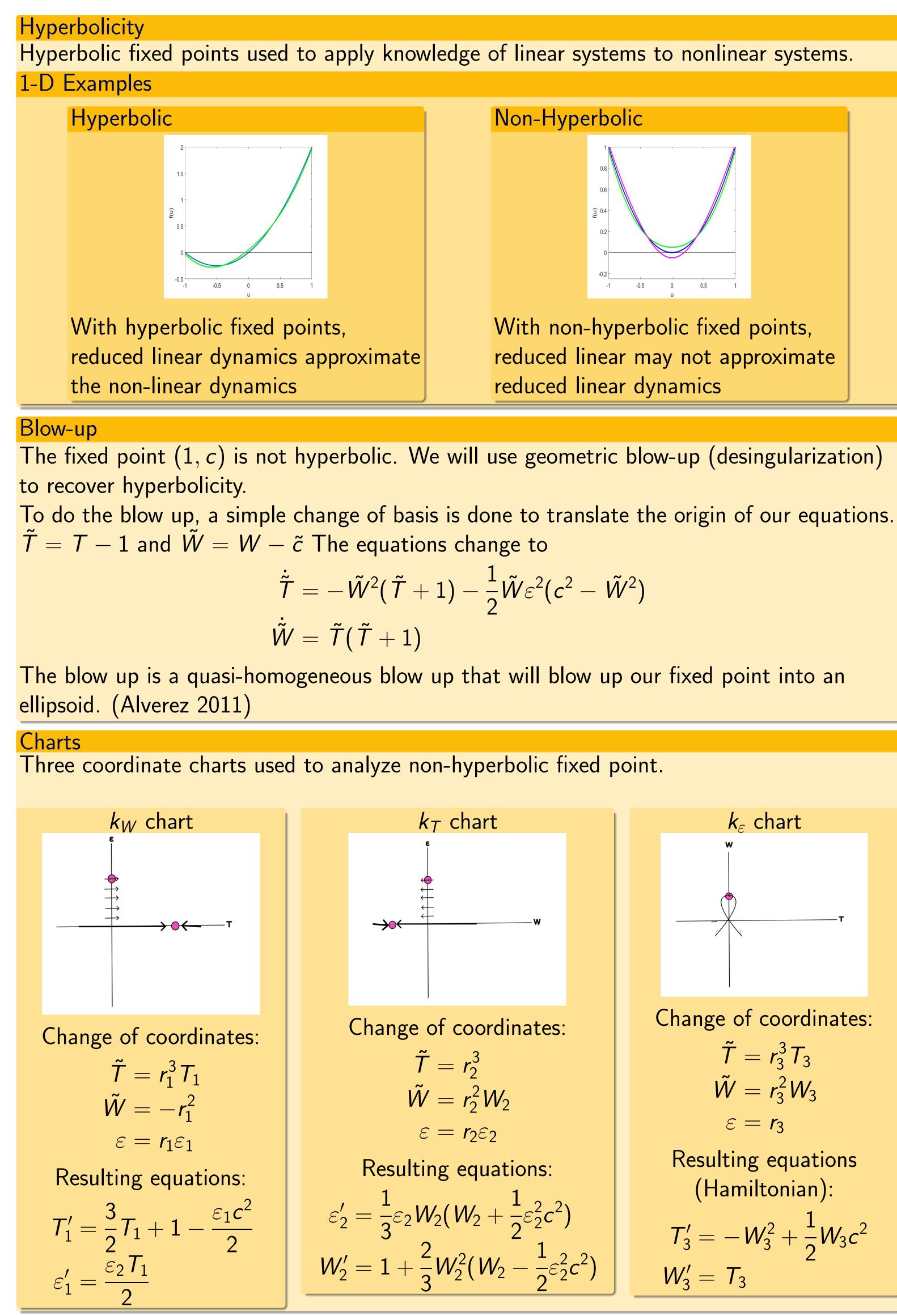
Hyperbolicity and Heteroclinic Orbits



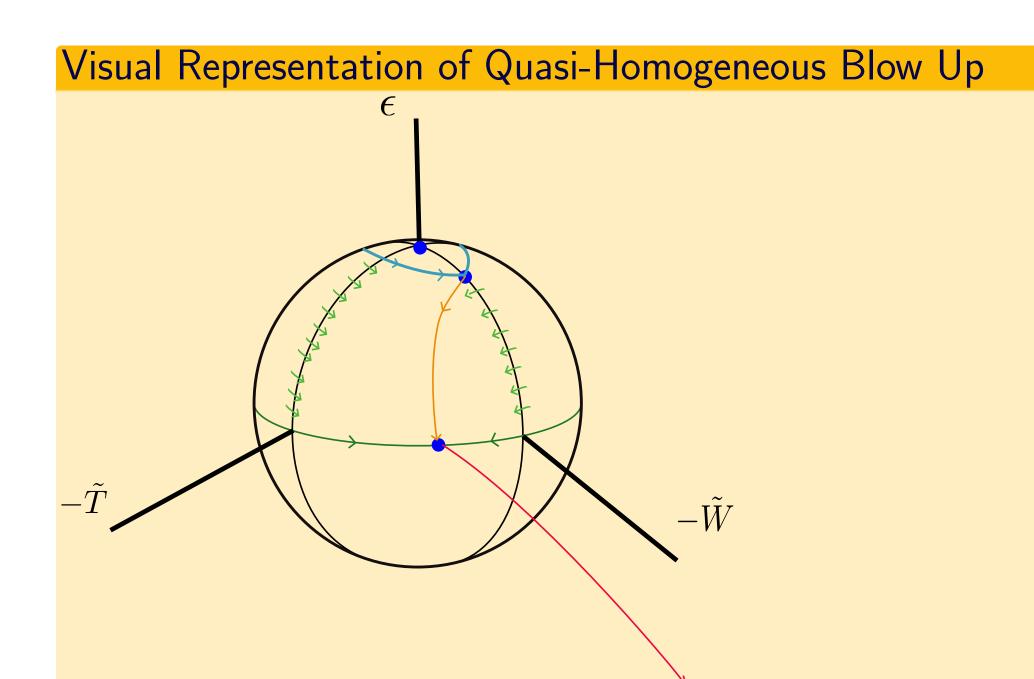
Mason Experimental Geometry Lab

December 2, 2022

$$c^*, 0) = 0$$
 along a



$$(+1)-rac{1}{2} ilde{W}arepsilon^2(c^2- ilde{W}^2)$$



This blow up shows the three fixed points that were truncated when the small parameter, ε , is set to zero. By projecting onto the three charts, the top two fixed points are in a Hamiltonian system are found in the k_{ε} chart and the remaining fixed point is found in the k_T chart. The green arrows, along with the diagrams of the charts, represent a trapping region for the solution that connects the two fixed points. The trapping region ensures that no solution can leave the region, thus, establishing the existence of a solution that connects the two. Satisfying Implicit Function Theorem When a heteroclinic orbit exists, h_s and h_u are identical, so $\Phi(c,\varepsilon)$ is zero if and only if a heteroclinic orbit exists. We have shown that the $\Phi(c,\varepsilon)$ is zero along the section when T=1/2. By regaining hyperbolicity, it is shown that Φ is smooth in parameters. All conditions for the Implicit Function Theorem are

Conclusion

wave speeds, $\tilde{c} \geq \sqrt[3]{\frac{3}{2}}$

References

Bramburger, J.J., Henderson, C. The Speed of Traveling Waves in a FKPP-Burgers System. Arch Rational Mech Anal 241, 643-681 (2021). https://doi.org/10.1007/s00205-021-01660-5 Alvarez, Ferragut, Jarque. A Survey on the Blow Up Technique. International Journal of Birfurcation and Chaos, Vol. 21, No. 11, 3103-3118 (2011)/. https://doi.org/10.1142/S0218127411030416

From the implicit function theorem, we know that a heteroclinic orbit exists and so we can express W as a function of T and inspect $\frac{dW}{dT}$. The limit of $\varepsilon \to 0$ is equivalent to $\rho \to \infty$ in the original system. Thus, there exist traveling wave solutions for