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Abstract
We model arrival times of an infection in a
network and look at monotonicity of these
times as a function of a diffusion parameter
(the propensity for population to travel
between nodes). Using the limiting models
of infinite lattice graphs, we identify some
special cases and conditions for
nonmonotonicity.

Introduction
Networks allow modeling of uneven
population densities. To determine the
probability of a random walk of size n
between nodes, we can look at the powers
of the adjacency matrix of the network. In
this project, we study the relationships
between walk length and probability and
determine what causes decreasing and
non-monotone behavior in probability and
spread speed as we increase the travel rate
of people.

Linearization the extended SI model
The SIR model is governed by this series of differential
equations, where P is a matrix representing the connections
between nodes as probabilities of ”traversal”, uniform on each
node:

dSn
dt

= −αInSn + γ
∑
m

Pnm(Sm − Sn) (1)

dIn
dt

= αInSn − βIn + γ
∑
m

Pnm(Im − In) (2)

Which can be linearized by (S , I ) = (1− s, i),

din
dt

= (α− β − γ)in + γ
∑
m

Pnmin (3)

Matrix solution
d i

dt
= ((α− β − γ)I + γP)i (4)

Then apply the substitution {τ = (α− β)t, γ̃ = γ
α−β} and

rename variables appropriately to simplify:

d i

dt
= ((1− γ)I + γP)i (5)

We look at when a specific node breaches an arbitrary
threshold infection of 1 and expand the matrix exponential.

in(t) = F (γ, t) = e(1−γ)t
∑
k≥0

Pk

k!
γktk = 1 (6)

The total derivative of the equation
The total derivative of the equation can be determined to be

dt

dγ
= −Fγ

Ft
(7)

by solving for the partial derivative of equation (6) with respect
to γ and t we will get the equations.

Fγ = e(1−γ)t
∑
k≥0

tk+1γk

k!
(Pk+1 − Pk)

Ft = e(1−γ)t
∑
k≥0

tkγk

k!
(Pk + γ(Pk+1 − Pk))

GUI Results and Analysis

Figure: GUI created on
Matlab. creates a probability vs
arrival time and a gamma vs
arrival time graph for the selected
graph type.

Figure: Barabási–Albert
graph

Figure: Caylee Tree graph

Figure: Square Lattice
graph

Graphs

Figure: probability vs arrival time and γ vs arrival time
graphs for the non-monotone and monotone decreasing BA
graphs

Figure: probability vs arrival time and γ vs arrival time
graphs for the non-monotone and monotone decreasing
Caylee Tree graphs

Figure: probability vs arrival time and γ vs arrival time
graphs for the non-monotone and monotone decreasing
Square lattice graphs

monotone decreasing and non-monotone
What makes a graph monotone decreasing vs non-monotone can be determined by looking at the equation (7). The signs of −Pk + Pk+1 and
Pk + γ(Pk+1 − Pk) control the sign of dt

dγ and thus whether it is monotone decreasing or non-monotone

Pk+1 > Pk

Fγ and Ft are also always positive. Thus monotone decreasing.

Pk+1 < Pk
Fγ will always be negative. However, the sign of equation Ft depends on γ.

γ < −Pk

(Pk+1−Pk)

Ft is positive and the the graph is non-monotone
γ > −Pk

(Pk+1−Pk)

Ft is negative and the the graph is monotone
γ = −Pk

(Pk+1−Pk)

Ft is 0 and the the graph is undefined

0 case
By (7), when Fγ=0, t is at an extremum. ∑

k≥1

γk−1tk−1d !

(k + d − 1)!
Pd+k(

γt

k + d
− 1) = 0 (8)

If solutions exist, the arrival times display non-monotonicity.

Conclusion
Using our more robust form of the SIR Model and
the use of meta-population models we can derive
how a disease expands with the uneven flow of
population growth and travel.
We found something rather counter intuitive,
typically when the number of flights required to get
from one node to another is higher the probability
an infected person will arrive at the end location is
strictly decreasing. For some graphs this is not the
case. We found that for the following probability
series, the derivative in (7) is undefined.

Pk+1 = Pk(
γ − 1

γ
) (9)

We found the probability matrix for a square and line
graph of infinite nodes and concluded that for both
graphs there is some set of initial and final nodes
that imply a non-monotone decreasing function.

Future Work
In the future we can expand this work by attempting
to derive the probability matrices for more complex
graphs and perhaps a simple graph that describes
the general layout of the airports around the world.
This would provide us with a general means of
describing the motion of a disease as it expands
throughout the world.
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