Combinatorial Formulas for the Equivariant Cohomology of Peterson Varieties

Swan Klein, Connor Mooney
Advised by: Rebecca Goldin, Quincy Frias

May 6, 2022

Complete Flag Variety

$X=F /\left(\mathbb{C}^{n}\right)=\left\{0 \subset V_{1} \subset \cdots \subset V_{n-1} \subset \mathbb{C}^{n} \mid \operatorname{dim}\left(V_{i}\right)=i\right\}$ Each point in X is a chain of vector spaces.

$$
\mathbb{R}^{0} \subseteq \mathbb{R}^{1} \subseteq \mathbb{R}^{2}
$$

Peterson Variety

The Peterson variety
the collection of flags satis

$$
M V_{i} \subset V_{i+1} \quad 1 \leq i \leq n-1
$$

where M is a principal nilpotent operator, i.e., a matrix with one Jordan block with 0 s on the diagonal.

Schubert classes on X and on Y

Basis for $H_{s}^{*}(X)$: Schubert classes σ_{v}, indexed by elements of S_{n}. Basis for $H_{S}^{*}(Y)$: Peterson classes, p_{1} each indexed by $I \subseteq[n-1]=\{1,2, \cdots n-1\}$. Peterson classes are all images of specific Schubert classes under

$$
\iota^{*}: H_{S}^{*}(X) \longrightarrow H_{S}(Y)
$$

Combinatorics of Algebraic Varieties

Variety	Basis Classes	Index Set
$\operatorname{FI}\left(\mathbb{C}^{n}\right)$	Schubert classes $\left(\sigma_{w}\right)$	$\mathrm{w} \in S_{n}$
$\operatorname{Pet}(n)$	Peterson Schubert Classes p_{A}	$A \subseteq[n-1]$

Weal express the restriction of transposition Schubert classes to the Peterson variety as a linear combination of Peterson classes:

$$
\iota^{*}\left(\sigma_{w}\right)=\sum_{A \subset[n-1]} b_{w}^{A} p_{A} .
$$

We want to find a positive formula for the coefficients b_{w}^{A}

Combinatorial Triangles
These triangles exemplify restricting $\tau_{1,8}$ to $w_{[11]}$

Let W_{A} be reduced-word representation for w_{A} of the following form: For each consecutive subset of A, without loss of generality $\{a, a+1, \cdots b\}$, we multiply $\left(s_{a} s_{a+1} \cdots s_{b-1}\right)\left(s_{a} \cdots s_{b-2}\right) \cdots\left(s_{a} s_{a+1}\right) s_{a}$. Then

$$
\left.\iota^{*}\left(\sigma_{u}\right)\right|_{W_{A}}=\sum_{U \in \rho(u)} n_{W_{A}}(U)\left(\prod_{j \in U}\left(j-\mathcal{T}_{A}(j)+1\right)\right)
$$

where $\rho(u)$ is the set of reduced words of $u, n_{W_{A}}(U)$ is the number times the word U occurs as a subword of W_{A}, and $\mathcal{T}_{A}(j)$ is the smallest integer in the maximal consecutive subset of A containing j.
$c_{j}=s_{1} s_{2} \cdots s_{j}$ is a subword of $w_{[m]}$ where $W_{[m]}=\left(s_{1} s_{2} \cdots s_{m}\right)\left(s_{1} \cdots s_{m-1}\right) \cdots\left(s_{1} s_{2}\right) s_{1}$ in $\binom{m}{j}$ different ways.
Theorem (Braid Cardinality Theorem)

Let

$$
\operatorname{Br}_{m}\left(b_{0} ; \tau_{i j}\right)=\sum_{a=j-b_{0}}^{m-j+2}\binom{a+b_{0}-i-1}{b_{0}-i}\binom{m+1-i-a}{b_{0}-i}\binom{a-1}{j-b_{0}-1}\binom{m-a-b_{0}+1}{j-b_{0}-1}
$$

be the braid cardinality of $\tau_{i j}$ with braid index b_{0}. Then, we have that

$$
\sum_{U \in R(\tau, u)} n_{W_{[m]}}(U)=\sum_{\partial=\max \left(\partial_{i-m}\right)}^{j} \operatorname{Br}\left(b_{0} ; \tau_{i j}\right) .
$$

Braid Cardinality Combinatorics

The braid cardinality of $\tau_{1 j}$ for braid index b_{0} can be simplified to

$$
\begin{equation*}
\operatorname{Br}_{m}\left(b_{0} ; \tau_{1 j}\right)=\binom{j-2}{b_{0}-1}^{2}\binom{m+b_{0}-1}{2 j-3} \tag{1}
\end{equation*}
$$

Our Conjectu

Let $\tau_{i j}$ be the transposition of i and j, where $i<j$, and call $m \equiv j-i$ the magnitude of the transposition. We have that

$$
\begin{equation*}
\iota^{*}\left(\sigma_{\tau_{i j}}\right)=\sum_{k=0}^{m-1} \sum_{h=0}^{k} h!\binom{k}{h}^{2}\binom{m-1}{k}^{2} t^{h} \tag{2}
\end{equation*}
$$

excluding terms where $1+i-k-m<1$ or $j+k-h \geq n$. Theorem ($i=1$ case, proven by us)
Let $\tau_{i j}$ be the transposition of 1 and j. Then

$$
\begin{equation*}
\iota^{*}\left(\sigma_{\tau_{1 j}}\right)=\sum_{h=0}^{j-2} h!\binom{j-2}{h}^{2} t^{h} p_{[2 j-h-3]} \tag{3}
\end{equation*}
$$

Challenges to Proving Conjecture for $\tau_{i j}$

The last challenge to proving our conjecture for arbitrary
transpositions is using combinatorial identities to show
transpositions is using combinatorial identities to show derived from the visual triangle representation. One approach we've taken is employing the Egorychev method for deriving identities for sums of binomial coefficients.
Acknowledgments
Acknowledgments by teaching us all the material required for understanding and working on this project. We are also thankful to MEGL for facilitating our project.
[1]R. Goldin and B. Gorbutt, "A positive formula for type A Peterson Schubert calculus." Available:
https://arxiv.org/abs/2004.05959
[2]M. Harada and J. Tymoczko, "A positive Monk formula in the S^{1}-equivariant cohomology of type A Peterson varieties,"
arXiv:0908.3517 [math], Aug. 2009, doi: $10.1112 / \mathrm{plms} / \mathrm{pdq} 038$. [3]S. C. Billey, "Kostant polynomials and the cohomology ring for G/B. Available: http://www.jstor.org/stable/41442.

