Random 3D Polyforms

Dhruv Gramopadhye, James Serrano, Khoi Tran

A Mason Experimental Geometry Lab DﬁESCBGI\f

UNIVERSITY

\f

May 6 2022
Introduction to Polyforms | Holes and the Euler Characteristic | Optimizations |
A polyform is a figure constructed by joining together identical Siller Clreraeeratie For any given polyomino, it is given the number of After a shuffle, we must check that the polyomino is still strongly
polytopes connected by at least one of their faces. Specifically, we y=V—-E+F=C—H connected components of the complement is equal to 1. connected. This operation takes notably longer than the shuffle
are studying randor_n polyforms composed of strongly co.nnected Vertices - Edges 4+ Squares = Connected Components - Given this fact, and an adaptation of Pick’'s theorem, we itself.
cubes. Every cube is connected by a path of cubes sharing two Holes can find the number of holes of a given polyomino by @ For 2D polyominoes, the estimated total shuffle time is
dimensional square faces. We're interested in the geometric Shelds Tlheeran counting it's interior and boundary points. We iterate between n? and n®, where n is the number of squares in the
characteristics of polyforms, such as the perimeter, radius, and A=+ g 1 over every vertex of each square. If a given point holyomino.
number of holes of such generated shapes. Polyforms have Area — Interior Points - Boundary Points ¢ appears 1, 2, or 3 squares, it is a boundary point. If a @ We use a HashSet for near-instant lookups for pieces known

to be strongly connected.

@ We don't need to check that the whole polyomino is strongly
connected after a single shuffle operation; only pieces that were
disconnected have to be checked for strong-connectedness, allowing

applications in statistical physics, chemistry, and mathematics. Squares - Interior Points - Boundarzy Points | 1 _ Holes given point appears on 4 squares, it is an interior point.
Polyform of Length 64, shuffled 9999 times |

Metropolis Hastings Algorithm |

General process for sampling from a target distribution Understanding the MH Algorithm with 3d polyforms: us to use an early stopping condition.
using a transition kernel: Q Arbitrarily pick one of the cubes in the polyform. @ Further algorithmic speedups are possible by applying the
@ Choose an arbitrary point x; to be the first © Remove the cube from the polyform. early stopping condition more aggressively and by porting
observation xq. © Select a neighbor of the remaining cubes uniformly this to a lower-level programming language and using
@ Fort =1, 2, ... pick a candidate y for the next at random. multiple threads.
sample by picking from a selected probability @ Place the cube at the positions of one of the Future Work |
distribution. neighbors. Much of the work in this semester has been to create and
© Compute the acceptance probability, a. @ If the neighbor selected creates a valid connected optimize the code base required to generate and study random
© Generate a uniform random number v € [0, 1]. polyform, keep the cube where it is. If not, put the polyominos and polyforms. In the Fall, we intend to use the
The 2D Case: Polyominos @ If u < a, then accept the candidate, x;.1 = y. If original cube back as it was in the step 1. existing code:
Redelmeier’s Algorithm u > «, then reject the candidate and set, x;11 = x;. @ Sample from other distributions other than the uniform
s . . . distribution
Redelmeier’'s algorithm is a method of enumerating the number Codebase | _— v the homol f torm 3D volvf
of fixed polyominos of size n. A connected graph is created, Redelmeier’'s Algorithm | Shuffle | @ Turther study the homo o8y _O oHr Tangom _ AL
Where €very nOde in the graph iS d |0Cation fOI’ d Square€ Of d size (0,4) Algorithm 2: Metropolis-Hastings Algorithm for Shuffling Polyforms = LOOk fOI’. NEW .and.rr?ore eff|C|en.t Ways Of Sthng polyforms,
n polyomino. Each polyomino is a subgraph within the graph Input: polyform whilst still maintaining the desired distributions
_ _' _ Output: boolean
which contains n nodes. LI 09 7 (9 1 connected = set(polyform, 0) ACknOW|edgementS l
. . 1 =1 Iyt ’ - . i
Enumerating Polyominos | e v B ppa M e : ssﬁﬁzﬂen(;;;?;xfing . We'd like to thank our pIrOJect mentors Dr. Schwel.nhart and Dr.
@ Create an "empty’ polyomino as the parent, with an 4 | for cube € polyform do Roldan. We would also like to thank Aleyah Dawkins, our
, o . y ighbors = getPeri be) for neighb ghbors d : -
untried” set of nodes with only the origin. (=3,) (=2 D (LD (0,1) (H (L) [(2 1) [(3,1) j e s;:ghb()gfz iﬂﬁ;ﬁ;ﬁh&or TSI (S THEGRony G gra?luate r.esearch aSS|.stant_, and MEGL for supporting our work.
© Remove a random entry in the untried set 7 remove(polyform, cube) We're excited to continue in the fall of next semester.
. (0,0) (1,0) (2,0) (3,0) (4,0) 8 append(connected, Cube) References.
e Add d nOde to the gra Ph Algorithm 1: Redelmeier’s Algorithm for Enumerating Polyominos of o if_las_tLe'n,) len(polyfarm) —— 0 then -] N] _
e Count the new polyomino. Sllzflr?ut: graph, untried, n, current 10 Lreturn False ° Kahl_e' I\/Iatthew, and Eilka ROldan F.)olyomlnoeS with
© If the size is less than n: 1 gﬁfﬁkﬁﬁedp 0 do 11 | lastLen = len(polyform) |\/|aXIma||y Many Holes.” Geombinatorics Quarterly, XX|X,

@ Add new neighbor nodes to the "untried”. ; Zp;e‘;gt(iiﬁfr[git ’ 12 return True no. 1, July 2019, pp. 5-15.
@ Recursively call the algorithm, with the new polyomino becoming the 4 %"emove(untried:u) glptut:t?(ﬂ}ylf(%md - o Aleksandrowicz, Gadi, and Gill Barequet. “Redelmeier’s
5 if len(current) = n then WHE[RALE LS o LEUIOUE0. O O]
PEIRSE, | o 6 | | count = count + 1 13 x = pop(polyform, random[0, polyformSize]) Algorithm for Counting Lattice Animals.” Proceedings of the
©® Remove the new neighbor nodes from "untried”. 7 | else 14 X411 = random[get Perimeter(candidate)] . .
o R) . s | | newNeighbors = createSet() 15 append (polyform, x; 1) 27th Annual ACM Symposium on Computational Geometry -
emove the newest node. 9 for v € graph do if ' : ,
10 if v ¢ untried, v ¢ current, v ¢ neighbors then 10 38 ValZdPOnyorm(pOZyomznO) LU=y SOCG].]., June 2011, pp 283_284,
11 | append(newNeighbors, v) 1y remove(polyform, x;11) .
| o 18 | append(polyform, x) https://doi.org/10.1145/1998196.1998238.
12 newuntried = untried 4+ neighbors
13 B polycount(graph, newuntried, n, current) 19 return polyform
14 | remove(current, u)

15 return count

