Combinatorics of Cohomology Rings of the Peterson Variety: Transpositions

Swan Klein, Connor Mooney Advised by: Rebecca Goldin, Quincy Frias

George Mason University, Mason Experimental Geometry Lab

May 6, 2022

Introduction and Motivation

- Let X and Y be two rings with additional $\mathbb{C}[t]$-module structure.
- X has module basis $\left\{\sigma_{w} \mid w \in S_{n}\right\}$ where S_{n} is the permutation group on n symbols.
- Y has module basis $\left\{p_{A} \mid A \subseteq\{1,2, \cdots, n-1\}\right\}$.
- We have a surjective ring map $\iota^{*}: X \rightarrow Y$.
- Let $v_{A}=\Pi_{j \in A} s_{j}$ ordered with lower j s to the left, where $s_{j}=(j, j+1)$. Then

$$
p_{A}=\iota^{*} \sigma_{v_{A}} .
$$

- Question: What is $\iota^{*} \sigma_{w}$ in terms of the $\left\{p_{A}\right\}$ for $w \neq v_{A}$?

Transposition Conjecture

Let $\tau_{i j}$ be the transposition of i, j, where $i<j$. Let $m:=j-i$. Then

$$
\iota^{*}\left(\sigma_{\tau_{i j}}\right)=\sum_{k=0}^{m-1} \sum_{h=0}^{k} h!\binom{k}{h}^{2}\binom{m-1}{k}^{2} t^{h} p_{[1+i+k-m, j+k-h-1]}
$$

excluding any terms where $1+i-k-m<1$ or $j+k-h \geq n$, where $[a, b]=\{a, a+1, \cdots b-1, b\}$.

A Simpler Case Proven

Let $\tau_{1 j}$ be the transposition of $1, j$, where $j>1$. Then

$$
\iota^{*}\left(\sigma_{\tau_{1 j}}\right)=\sum_{h=0}^{j-2} h!\binom{j-2}{h}^{2} t^{h} p_{[2 j-h-3]}
$$

where $[2 j-h-3]=\{1,2, \cdots 2 j-h-3\}$.

Reduced words for $\tau_{1 j}$

The shortest possible strings of $s_{i}=\tau_{i, i+1}$ that multiply out to $\tau_{1 j}$. They have length $2 j-3$. They are related by commutation (i.e. $s_{1} s_{3}=s_{3} s_{1}$) and braid moves $\left(s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}\right)$:

$$
\begin{gathered}
\tau_{1 j}=s_{1} s_{2} s_{3} s_{4} \cdots s_{j-3} s_{j-2} s_{j-1} s_{j-2} s_{j-3} \cdots s_{2} s_{1} \\
=s_{1} s_{2} s_{3} s_{4} \cdots s_{j-3} s_{j-1} s_{j-2} s_{j-1} s_{j-3} \cdots s_{2} s_{1} \\
=s_{j-1} s_{1} s_{2} s_{3} s_{4} \cdots s_{j-3} s_{j-2} s_{j-1} s_{j-3} \cdots s_{2} s_{1} \\
\vdots \\
=s_{j-1} s_{j-2} s_{j-3} \cdots s_{3} s_{2} s_{1} s_{2} s_{3} \cdots s_{j-3} s_{j-2} s_{j-1}
\end{gathered}
$$

Localization

We used a technique called localization and reduced the proof to calculating this:

$$
\sum_{U \text { red. for } \tau_{1 j}} n_{W_{[m]}}(U) / b(U)
$$

where

$$
W_{[m]}=\left(s_{1} s_{2} \cdots s_{m-1}\right)\left(s_{1} s_{2} \cdots s_{m-2}\right) \cdots\left(s_{1} s_{2}\right) s_{1}
$$

we are summing over reduced words U for $\tau_{1 j}, n_{W_{[m]}}(U)$ is the number of ways the reduced word U fits into $W_{[m]}$, and $b(U)$ is the word's braid index.

Triangle Representation of a Long Word

The following triangle represents $W_{[11]}$. A dot in row i represents simple reflection s_{i}. The $j^{\text {th }}$ diagonal from the leftmost diagonal represents $s_{1} s_{2} \cdots s_{11-j}$.

Triangle: Possible Braid Nodes

The blue triangle contains possible indices for the simple reflection with a unique index.

Triangle: Possible Ascending/Descending Subwords

Choosing one braid node, we get 4 parallelograms of green dots that contain possible ascending and descending subwords.

Triangle: Choosing Diagonals

In each parallelogram, we can choose a number of diagonals equal to the dot height from the number of choices equal to the dot height plus the dot length of the base minus 1 .

Counting Elements of a Braid Index

By looking at all possible braid node choices on row $b_{0} \leq m$ on the triangle representation of $W_{[m]}$, we found that there are

$$
\begin{align*}
\operatorname{Br}_{m}\left(b_{0} ; \tau_{1 j}\right)= & \sum_{a=j-b_{0}}^{m-j+2}\binom{a+b_{0}-2}{b_{0}-1}\binom{m-a}{b_{0}-1} \\
& \times\binom{ a-1}{j-b_{0}-1}\binom{m-a-b_{0}+1}{j-b_{0}-1} \tag{1}
\end{align*}
$$

ways to write expressions of $\tau_{1 j}$ with braid index a as subwords of $W_{[m]}$. Then

$$
\sum_{U} n_{W_{[m]}}(U) / b(u)=\sum_{b=1}^{j-1} B r_{m}\left(b ; \tau_{1 j}\right) / b
$$

Simplifying $\operatorname{Br}_{m}\left(a ; \tau_{1 j}\right)$

We use the identity

$$
\binom{n}{h}\binom{n-h}{k}=\binom{n}{h+k}\binom{h+k}{h}
$$

on the first and third, as well as second and fourth pairs in the summands of Eq. (1) to get

$$
\operatorname{Br}_{m}\left(b_{0} ; \tau_{1 j}\right)=\binom{j-2}{b_{0}-1}^{2}\left(\sum_{a=j-b_{0}}^{m-j+2}\binom{a+b_{0}-2}{j-2}\binom{m-a}{j-2}\right)
$$

By reindexing with $c=a+b_{0}-2$, we obtain

$$
\begin{equation*}
\operatorname{Br}_{m}\left(b_{0} ; \tau_{1 j}\right)=\binom{j-2}{b_{0}-1}^{2}\left(\sum_{c=j-2}^{m-j+b_{0}}\binom{c}{j-2}\binom{m-c+b_{0}-2}{j-2}\right) \tag{2}
\end{equation*}
$$

Simplifying $\operatorname{Br}_{m}\left(a ; \tau_{1 j}\right)$

We can use that

$$
\sum_{c=\kappa}^{\mu-\kappa}\binom{c}{\kappa}\binom{\mu-c}{\kappa}=\binom{\mu+1}{2 \kappa+1}
$$

to get that

$$
\begin{equation*}
\operatorname{Br}_{m}\left(b_{0} ; \tau_{1 j}\right)=\binom{j-2}{b_{0}-1}^{2}\binom{m+b_{0}-1}{2 j-3} \tag{3}
\end{equation*}
$$

Our Theorem Rephrased

If we prove that

$$
\frac{1}{m}\binom{m}{j-1}^{2}=\sum_{k=1}^{j-1} \frac{1}{k}\binom{j-2}{k-1}^{2}\binom{m+k-1}{2 j-3}
$$

we're done. This is equal to the assertion that

$$
\binom{m}{j-1}\binom{m-1}{j-2}=\sum_{k=1}^{j-1}\binom{j-1}{k}\binom{j-2}{k-1}\binom{m+k-1}{2 j-3}
$$

Closing Out The Proof

There is an identity that

$$
\sum_{i=0}^{\min (a, b)}\binom{x+y+i}{x+y}\binom{y}{y+i-a}\binom{x}{x+i-b}=\binom{x+a}{x}\binom{y+b}{y}
$$

We can re-index to make that prove that

$$
\binom{m}{j-1}\binom{m-1}{j-2}=\sum_{k=1}^{j-1}\binom{j-1}{k}\binom{j-2}{k-1}\binom{m+k-1}{2 j-3}
$$

so we're done.

Next Steps

- We want to prove the general case with $\tau_{i j}$.
- We want to be able to restrict transpositions to long words that don't necessarily start at 1 .
- Afterwards, we'd want to be able to compute the pullback of these transpositions.
- We want to publish our results.

