Questions

- Can you identify equilibrium orientations?
- Can you identify stable equilibrium orientations?

Center of Gravity

Discrete Sum

$$M_{tot}\vec{G}=\sum_{i=1}^{''}m_i\vec{x_i}$$

• Continuous Sum
$$\vec{G} = \frac{1}{M_{obj}} \int_{\Omega} \vec{x} \rho(\vec{x}) dV$$

Center of Buoyancy

Center of mass of the displaced fluid

$$=\frac{1}{M_{sub}}\int_{\Omega_{sub}}\vec{x}\rho_{fluid}dV$$

Archimedes' Principle

• The upward buoyant force exerted on an object wholly or partially submerged, is equal to the weight of the displaced fluid.

$$M_{obj}g = \rho_{fluid}V_{sub}g$$
$$\frac{V_{sub}}{V_{obj}} = \frac{\rho_{obj}}{\rho_{fluid}}$$

• For an iceberg in seawater

$$rac{
ho_{obj}}{
ho_{fluid}}pprox 0.9$$

Algorithm: Computing Potential Energy Landscapes

- Given a set of boundary points
- Compute \vec{G} (center of mass)
- For $\theta \in [0, 2\pi]$ (orientation of object)
 - Identify water line consistent with Archimedes'
 - Compute $\vec{B}(\theta)$ (center of buoyancy)
 - Potential Energy
- $U(heta) \sim \hat{n}(heta) \cdot (\vec{G} \vec{B}(heta))$

The Stability of Floating Objects

Lujain Nsair, Joshua Calvano, Brandon Barreto Professor Daniel Anderson

Mason Experimental Geometry Lab

December 3, 2021

References

and MEGL for supporting our research.

Gilbert, E. N. "How Things Float." The American Mathematical Monthly, vol. 98, no. 3, 1991, p. 201., https://doi.org/10.2307/2325023. Pollack, Henry. "Tip of the Iceberg." Physics Today, vol. 72, no.

12, 2019, pp. 70–71., https://doi.org/10.1063/pt.3.4373.