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Abstract
This research project is a mathematical model that characterizes
the spread of COVID-19 on the GMU campus. It is based on the
SEIAQR epidemic model and focuses on the unique situation at
George Mason. We take into account the effects of university’s
preventative measures by analyzing extensions of the SEIAQR
model and their reproduction numbers. From this, we can
determine how effective the university’s guidelines are and better
understand the transmission of COVID-19 for this type of
environment.

Introduction
An SIR model captures how disease is transmitted by
categorizing the disease’s tendencies and quantifying the
population’s reaction. To model the transmission of COVID-19
at GMU, we started our research with a basic SEIAQR epidemic
model. Our final model (Extended Model 3), uniquely accounts
for vaccination status, a/symptomatic infection, and three
different types of quarantine behavior. As the population flows
through each of these categories, we consider parameters specific
to GMU such as high mask usage, quarantine disobedience, and
random testing. Finally, we used MATLAB to graph the affect of
these parameters and analyze how they affect the population.
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Extended Model 1: SEIAQR with Semi Quarantine

Ṡ = −k(1−m)S
N (I s + I a + XQ s)

Ė = k(1−m)S
N (I s + I a + XQ s)− iE

˙I a = (1− p)iE − tI ar(1− c)− rI a

˙I s = piE − (t + g)I s(1− c)− rI s

Q̇ = w(1− c)(I s(t + g) + I at − rQ

Q̇ s = (1− w)(1− c)(I s(t + g) + I at)− rQ s

Ṙ = r(I a + I s + Q + Q s)

Extended Model 2: SEIAQR with Expanded Quarantine
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Extended Model 3: SEIAQR with Vaccination Status

V̇ = −b1VA−b1VS
N1

Ė = b1VA+b1VS
N1

− nE

Ṡ = npE − us1S − us2S − us3S

Ȧ = n(1− p)E − ua1A− ua2A− ua3A

Q̇1 = ua1A + us1S + ũa1A1 + ũs1S1− c1Q1

Q̇2 = ua2A + us2S + ũa2A1 + ũs2S1− c1Q2

Q̇3 = ua3A + us3S + ũa3A1 + ũs3S1− c1Q3

Ṙ = c1Q1 + c1Q2 + c1Q3

V̇ 1 = −b2V 1A1−b2V 1S1
N2

Ė1 = b2V 1A1+b2V 1S1
N2

− nE1

Ṡ1 = nqE1− ũs1S1− ũs2S1− ũs3S1

Ȧ1 = n(1− q)E1− ũa1A1− ũa2A1− ũa3A1

R0 for the Extended Models
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Computational Results

(Left) As quarantine disobedience is increased, the peak infection rate increases. (Right) Increasing m, the

percentage of the susceptible population that is masked, resulted in the peak infection count decreasing

(Left) SEIAQR with Semi Quarantine. (Right) SEIAQR with Expanded Quarantine.

Conclusion
Here we have introduced three new mathematical models for understanding
the transmission of COVID-19 within a university campus environment. The
basic reproduction number for each the models have been computed and they
each tell us that it is unlikely for an outbreak to occur in this environment.
The efficacy of our parameters has been computationally studied and from
that we know that the university’s preventative measures are working.

The reproduction number for Model 2 is .02015, which indicates that an
outbreak is very unlikely. In order to reduce the likelihood of an outbreak
even further, mitigation strategies such as mask use should be increased
and quarantine disobedience should be decreased.

Understanding the effects of each of these strategies will inform other
Universities how the guidelines that GMU has implemented would affect
the transmission of COVID-19 and allow them to enforce their own
preventative measures.

Future Work
Model 3 will account for quarantine affecting the susceptible population

We would like to 3D print Model 3’s solution

An application will be developed to study our parameters in more detail

Networking and proximity will be better accounted for

References
[1]Brauer, F., Castillo-Chavez, C. C. Castillo-Chavez, Mathematical models in population biology and

epidemiology, Vol. 2, Springer, 2012.

[2] Diekmann, O., Heesterbeek, J. A. P., Metz, J.A., On the definition and the135 computation of the basic

reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, Journal of mathematical

biology 28 (4) (1990) 365–382.

[3] Kermack, W. O., and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics.

Proceedings of the Royal Society of London. Series A, 115(772), 700-721.


