Cores and Hulls of Ideals of Commutative Rings

Dr. Rebecca R.G., John Kent, George Andrews, Aidan Donahue

George Mason University, MEGL

December 3, 2021

Rings

Definition

A **ring** is a set R equipped with two operations "addition" + and "multiplication" \cdot where:

- R is closed under addition
- R has an additive identity 0_R
- R contains additive inverses for all $r \in R$
- + is associative and commutative
- R is closed under multiplication
- · is associative (and has identity 1)
- \bullet · distributes over +

If multiplication is commutative, R is a commutative ring.

Examples of Commutative Rings

- Number Rings: \mathbb{Z} , \mathbb{Q} , \mathbb{R}
- Polynomial Rings: $\mathbb{Z}_2[x]$, $\mathbb{Q}[x, y]$

・ロット 4 回 > 4 回 > 4

Ideals of Commutative Rings

Definition

A subset I of a commutative ring R is an **ideal** of R if:

- 0_R ∈ I
- I is closed under same addition as R
- Every element in I has an additive inverse contained in I
- $r \cdot i \in I \ \forall \ i \in I \ \text{and} \ r \in R$

The set $(f_1, \ldots, f_s) = \{a_1 f_1 + \cdots + a_s f_s \mid a_i \in R\}$ is the **ideal generated** by f_1, \ldots, f_s . Furthermore, if *I* is an ideal of a ring *R*, then *R*/*I* is a ring where the elements of *I* act as 0_R .

Examples

- In the quotient ring $k[x_1, x_2, x_3]/(x_1x_3)$ we set $x_1x_3 = 0$. As a consequence, $x_1 \in (x_3 + 1)$ since $x_1 = x_1(x_3 + 1)$ and $x_3 + 1 \in (x_3 + 1)$
- For the above ring, $(x_1 + x_3)^n = x_1^n + x_3^n$

< □ > < □ > < □ > < □ > < □ > < □ >

Special Ideals In Commutative Rings

Definition

A prime ideal $P \subseteq R$ is an ideal such that $ab \in P$ implies $a \in P$ or $b \in P$. It is minimal if P contains no other prime ideals.

Example

For every prime number $p \in \mathbb{Z}$, (p) is a prime ideal of \mathbb{Z} since p|ab implies p|a or p|b

Special Ideals In Commutative Rings

Definition

A prime ideal $P \subseteq R$ is an ideal such that $ab \in P$ implies $a \in P$ or $b \in P$. It is minimal if P contains no other prime ideals.

Example

For every prime number $p \in \mathbb{Z}$, (p) is a prime ideal of \mathbb{Z} since p|ab implies p|a or p|b

Definition

The Annihilator of an ideal is the ideal

$$Ann_R(I) = \{r \in R \mid r \cdot i = 0_R \text{ for all } i \in I\}$$

Example in $S = k[x_1, x_2, x_3]/(x_1x_3)$

The minimal prime ideals of S are (x_1) and (x_3) . Since $x_1x_3 = 0$, Ann_R $(x_1) = (x_3)$ and Ann_R $(x_3) = (x_1)$.

Simplicial Complexes In Commutative Algebra

Definition

An **(abstract) simplicial complex** is a collection Δ of subsets of $\{x_1, \ldots, x_n\}$ (called faces) such that

- If F is a face of Δ, and S is any nonempty subset of F, then S is a face of Δ.
- For any two faces F_1, F_2 of Δ , $F_1 \cap F_2$ is also a face of Δ .

For our purposes we will take note of non-faces of Δ .

Simplicial Complexes In Commutative Algebra

Definition

An **(abstract) simplicial complex** is a collection Δ of subsets of $\{x_1, \ldots, x_n\}$ (called faces) such that

- If F is a face of Δ, and S is any nonempty subset of F, then S is a face of Δ.
- For any two faces F_1, F_2 of $\Delta, F_1 \cap F_2$ is also a face of Δ .

For our purposes we will take note of non-faces of Δ .

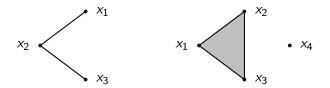


Figure: An illustration of two different simplicial complexes. We note that for the one on the left, $\{x_1, x_3\}$ and $\{x_1, x_2, x_3\}$ are non-faces

Stanley-Reisner Rings

Definition

- Stanley-Reisner rings are a class of quotient rings found in combinatorial commutative algebra. If k is a prime-characteristic field, and I is a square-free monomial ideal (generated by products of variables of degree 1) in k[x₁,...,x_n], then S = k[x₁,...,x_n]/I is a Stanley-Reisner Ring. In this ring, the polynomials of I behave as zero ring elements.
- For any simplicial complex, we have an associated Stanley-Reisner ring generated by the non-faces of our complex.

Stanley-Reisner Rings

Definition

- Stanley-Reisner rings are a class of quotient rings found in combinatorial commutative algebra. If k is a prime-characteristic field, and I is a square-free monomial ideal (generated by products of variables of degree 1) in k[x₁,...,x_n], then S = k[x₁,...,x_n]/I is a Stanley-Reisner Ring. In this ring, the polynomials of I behave as zero ring elements.
- For any simplicial complex, we have an associated Stanley-Reisner ring generated by the non-faces of our complex.

Simplicial Complexes In Commutative Algebra

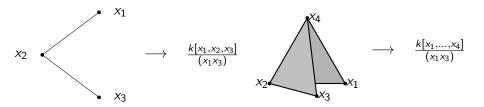


Figure: Our 'base' simplicial complex for computing examples

Figure: A simplicial complex with the same relations on its Stanley-Reisner ring, but has an additional vertex.

Interior Operations

Definition

Let I and J be ideals of a ring R. An operation

 $\textit{int}: \mathsf{Ideals} \text{ of } \mathsf{R} \to \mathsf{Ideals} \text{ of } \mathsf{R} \text{ is called an } \textbf{interior operation} \text{ if:}$

- $I_{int} \subseteq I$
- $(I_{int})_{int} = I_{int}$
- For $I \subseteq J$, $I_{int} \subseteq J_{int}$

< (17) > < (17) > <

Interior Operations

Definition

Let I and J be ideals of a ring R. An operation

 $\textit{int}: \mathsf{Ideals} \text{ of } \mathsf{R} \to \mathsf{Ideals} \text{ of } \mathsf{R} \text{ is called an } \textbf{interior operation} \text{ if:}$

• $I_{int} \subseteq I$

• For $I \subseteq J$, $I_{int} \subseteq J_{int}$

Example

The mapping that takes any ideal in R to the zero ideal is an interior operation.

$$I_{int} = (0)$$

The interior operation we are studying is called the tight interior

Tight Interiors and * - hull

Theorem (Vassilev 2021)

Let P_1, \ldots, P_m be the minimal prime ideals of a Stanley-Reisner ring S. Then the tight interior of an ideal $I \subseteq S$ is

$$I_* = \sum_{i=1}^m Ann_R(P_i) \cap I$$

Tight Interiors and * - hull

Theorem (Vassilev 2021)

Let P_1, \ldots, P_m be the minimal prime ideals of a Stanley-Reisner ring S. Then the tight interior of an ideal $I \subseteq S$ is

$$I_* = \sum_{i=1}^m Ann_R(P_i) \cap I$$

Definition

Let I be an ideal of a ring R. Then the * - hull of I in R is the ideal

$$*-hull(I)=\sum_{I\subseteq J,I_*=J^*}J$$

Where the J's are called *-expansions. Notice we need only sum over the maximal *-expansions (i.e. expansions not contained in any other) to find the * - hull.

Results

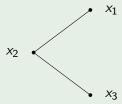
When is * - hull(I) = S?

• The minimal prime ideals of $S = k[x_1, x_2, x_3]/(x_1x_3)$ are (x_1) and (x_3)

$$I_*=(x_1)\cap I+(x_3)\cap I,$$

for any ideal.

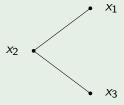
- Therefore, $S_* = (x_1) + (x_3) = (x_1, x_3)$ and any ideal with the same interior will have S as its hull.
- Therefore, if $x_1, x_3 \in I$, then * hull(I) = S.



Results

Results in $k[x_1, x_2, x_3]/(x_1x_3)$

- 1 $I_* = (x_1) \cap I + (x_3) \cap I$.
- 2 If $x_1, x_3 \in I$, then $I_* = (x_1, x_3)$ and * hull(I) = S.
- 3 If $p \in (x_1)$ or $p \in (x_3)$, then $(p)_* = (p)$.
- 4 $(x_2, x_3)_* = (x_1x_2, x_3)$ where (x_2, x_3) is a maximal *-expansion for (x_1x_2, x_3) .
- 5 Many specific examples: $(x_3 + 1)_* = (x_1, x_3^2 + x_3)$, $(x_2)_* = (x_1x_2, x_2x_3)$, etc.



Theorem (General Gluing Rule)

Let $\Delta = \Delta_1 \cup_{p_1,\ldots,p_d} \Delta_2$ be the resulting simplicial complex from gluing the simplicial complexes Δ_1 and Δ_2 along the common non-isolated (in both Δ_1 and Δ_2) points p_1,\ldots,p_d . If the vertices of Δ_1 are $x_1,\ldots,x_m,p_1,\ldots,p_d$ and the vertices of Δ_2 are $y_1,\ldots,y_n,p_1,\ldots,p_d$, then we have

$$I_*^{(S)} = I_*^{(S_1)} \cap (x_1, \dots, x_m) + I_*^{(S_2)} \cap (y_1, \dots, y_n).$$
(1)

Theorem (General Gluing Rule)

Let $\Delta = \Delta_1 \cup_{p_1,\ldots,p_d} \Delta_2$ be the resulting simplicial complex from gluing the simplicial complexes Δ_1 and Δ_2 along the common non-isolated (in both Δ_1 and Δ_2) points p_1,\ldots,p_d . If the vertices of Δ_1 are $x_1,\ldots,x_m,p_1,\ldots,p_d$ and the vertices of Δ_2 are $y_1,\ldots,y_n,p_1,\ldots,p_d$, then we have

$$I_*^{(S)} = I_*^{(S_1)} \cap (x_1, \dots, x_m) + I_*^{(S_2)} \cap (y_1, \dots, y_n).$$
(1)

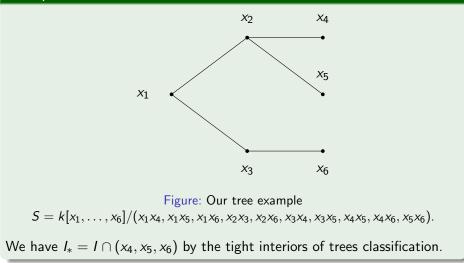
Theorem (Tight Interiors of Trees Classification)

Let Δ be a tree that is not the line segment with endpoints p_1, \ldots, p_m . Then

$$I_*=I\cap(p_1,\ldots,p_m).$$

- 4 回 ト 4 三 ト 4 三 ト

Example Tree



э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Compute more results for simple example and extend them to rings with more variables.
- Use the results from this semester to classify interiors for more complicated Stanley-Reisner rings.
- Relate 1st homology of a complex to interiors and hulls.

References

- 1 Epstein, N., R.G., R., and Vassilev, J. (2020). Nakayama closures, interior operations, and core-hull duality. ArXiv:2007.12209 [Math]. http://arxiv.org/abs/2007.12209
- 2 Vassilev, J. (2021). Tight Closures and Interiors and Related Structures in Rings of Characteristic p > 0. (Work in progress)
- 3 Epstein, N., and Schwede, K. (2014). A dual to tight closure theory. Nagoya Mathematical Journal, 213, 41–75. https://doi.org/10.1215/00277630-2376749
- Francisco C.A., Mermin J., Schweig J. (2014) A Survey of Stanley–Reisner Theory. In: Cooper S., Sather-Wagstaff K. (eds) Connections Between Algebra, Combinatorics, and Geometry. Springer Proceedings in Mathematics and Statistics, vol 76. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0626-0_5