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Rings

Definition

A ring is a set R equipped with two operations ”addition” + and
”multiplication” · where:

R is closed under addition
R has an additive identity 0R
R contains additive inverses for all r ∈ R
+ is associative and commutative
R is closed under multiplication
· is associative (and has identity 1)
· distributes over +

If multiplication is commutative, R is a commutative ring.

Examples of Commutative Rings

Number Rings: Z, Q, R
Polynomial Rings: Z2[x ], Q[x , y ]
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Ideals of Commutative Rings

Definition

A subset I of a commutative ring R is an ideal of R if:
0R ∈ I
I is closed under same addition as R
Every element in I has an additive inverse contained in I
r · i ∈ I ∀ i ∈ I and r ∈ R

The set (f1, . . . , fs) = {a1f1 + · · ·+ as fs | ai ∈ R} is the ideal generated
by f1, . . . , fs . Furthermore, if I is an ideal of a ring R, then R/I is a ring
where the elements of I act as 0R .

Examples

In the quotient ring k[x1, x2, x3]/(x1x3) we set x1x3 = 0. As a
consequence, x1 ∈ (x3 + 1) since x1 = x1(x3 + 1) and x3 + 1 ∈ (x3 + 1)
For the above ring, (x1 + x3)n = xn1 + xn3
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Special Ideals In Commutative Rings

Definition

A prime ideal P ⊆ R is an ideal such that ab ∈ P implies a ∈ P or b ∈ P.
It is minimal if P contains no other prime ideals.

Example

For every prime number p ∈ Z, (p) is a prime ideal of Z since p|ab implies
p|a or p|b

Definition

The Annihilator of an ideal is the ideal

AnnR(I ) = {r ∈ R | r · i = 0R for all i ∈ I}

Example in S = k[x1, x2, x3]/(x1x3)

The minimal prime ideals of S are (x1) and (x3). Since x1x3 = 0,
AnnR(x1) = (x3) and AnnR(x3) = (x1).
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Simplicial Complexes In Commutative Algebra

Definition

An (abstract) simplicial complex is a collection ∆ of subsets of
{x1, . . . , xn} (called faces) such that

If F is a face of ∆, and S is any nonempty subset of F , then S is a
face of ∆.
For any two faces F1,F2 of ∆, F1 ∩ F2 is also a face of ∆.

For our purposes we will take note of non-faces of ∆.

x2

x1

x3

x1 x4

x2

x3

Figure: An illustration of two different simplicial complexes. We note that for the
one on the left, {x1, x3} and {x1, x2, x3} are non-faces
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Stanley-Reisner Rings

Definition

Stanley-Reisner rings are a class of quotient rings found in
combinatorial commutative algebra. If k is a prime-characteristic
field, and I is a square-free monomial ideal (generated by products of
variables of degree 1) in k[x1, . . . , xn], then S = k[x1, . . . , xn]/I is a
Stanley-Reisner Ring. In this ring, the polynomials of I behave as zero
ring elements.
For any simplicial complex, we have an associated Stanley-Reisner
ring generated by the non-faces of our complex.

Example

x2

x1

x3

−→ S =
k[x1, x2, x3]

(x1x3)
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Simplicial Complexes In Commutative Algebra

x2

x1

x3

−→ k[x1,x2,x3]
(x1x3)

Figure: Our ’base’ simplicial complex for
computing examples

x4

x2
x3

x1

−→ k[x1,...,x4]
(x1x3)

Figure: A simplicial complex with the
same relations on its Stanley-Reisner

ring, but has an additional vertex.
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Interior Operations

Definition

Let I and J be ideals of a ring R. An operation
int : Ideals of R→ Ideals of R is called an interior operation if:

Iint ⊆ I
(Iint)int = Iint
For I ⊆ J, Iint ⊆ Jint

Example

The mapping that takes any ideal in R to the zero ideal is an interior
operation.

Iint = (0)

The interior operation we are studying is called the tight interior
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Tight Interiors and ∗ − hull

Theorem (Vassilev 2021)

Let P1, . . . ,Pm be the minimal prime ideals of a Stanley-Reisner ring S .
Then the tight interior of an ideal I ⊆ S is

I∗ =
m∑
i=1

AnnR(Pi ) ∩ I

Definition

Let I be an ideal of a ring R. Then the ∗ − hull of I in R is the ideal

∗ − hull(I ) =
∑

I⊆J,I∗=J∗
J

Where the J ′s are called ∗-expansions. Notice we need only sum over the
maximal ∗-expansions (i.e. expansions not contained in any other) to find
the ∗ − hull .
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Results

When is ∗ − hull(I ) = S?

The minimal prime ideals of S = k[x1, x2, x3]/(x1x3) are (x1) and (x3)

I∗ = (x1) ∩ I + (x3) ∩ I ,

for any ideal.
Therefore, S∗ = (x1) + (x3) = (x1, x3) and any ideal with the same
interior will have S as its hull.
Therefore, if x1, x3 ∈ I , then ∗ − hull(I ) = S .

x2

x1

x3

R.G., Kent, Andrews, Donahue (GMU) (George Mason University, MEGL)Cores and Hulls of Ideals of Commutative Rings December 3, 2021 10 / 15



Results

Results in k[x1, x2, x3]/(x1x3)

1 I∗ = (x1) ∩ I + (x3) ∩ I .
2 If x1, x3 ∈ I , then I∗ = (x1, x3) and ∗ − hull(I ) = S .
3 If p ∈ (x1) or p ∈ (x3), then (p)∗ = (p).
4 (x2, x3)∗ = (x1x2, x3) where (x2, x3) is a maximal ∗-expansion for

(x1x2, x3).
5 Many specific examples: (x3 + 1)∗ = (x1, x

2
3 + x3),

(x2)∗ = (x1x2, x2x3), etc.

x2

x1

x3
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Theorem (General Gluing Rule)

Let ∆ = ∆1 ∪p1,...,pd ∆2 be the resulting simplicial complex from gluing
the simplicial complexes ∆1 and ∆2 along the common non-isolated (in
both ∆1 and ∆2) points p1, . . . , pd . If the vertices of ∆1 are
x1, . . . , xm, p1, . . . , pd and the vertices of ∆2 are y1, . . . , yn, p1, . . . , pd ,
then we have

I
(S)
∗ = I

(S1)
∗ ∩ (x1, . . . , xm) + I

(S2)
∗ ∩ (y1, . . . , yn). (1)

Theorem (Tight Interiors of Trees Classification)

Let ∆ be a tree that is not the line segment with endpoints p1, . . . , pm.
Then

I∗ = I ∩ (p1, . . . , pm).
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Example Tree

x1

x2

x3

x4

x5

x6

Figure: Our tree example
S = k[x1, . . . , x6]/(x1x4, x1x5, x1x6, x2x3, x2x6, x3x4, x3x5, x4x5, x4x6, x5x6).

We have I∗ = I ∩ (x4, x5, x6) by the tight interiors of trees classification.
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Future Explorations

Compute more results for simple example and extend them to rings
with more variables.

Use the results from this semester to classify interiors for more
complicated Stanley-Reisner rings.

Relate 1st homology of a complex to interiors and hulls.
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