Cores and Hulls of Ideals of Commutative Rings

Dr. Rebecca R.G., John Kent, George Andrews, Aidan Donahue

4
Mason Experimental Geometry Lab

Stanley-Reisner Rings

Stanley-Reisner rings are a class of quotient rings found in combinatorial commutative algebra. If $/$ is a square-free monomial ideal (generated by product of variables with degree 1) in $k\left[x_{1}, \ldots, x_{n}\right]$, then $S=k\left[x_{1}, \ldots, x_{n}\right] / I$ is a Stanley-Reisner Ring. In a Stanley-Reisner ring, every polynomial previously in I now behaves as the zero ring element.

Crucial in understanding Stanley-Reisner rings are the simplicial complexes associated to each Stanley-Reisner ring. We used this association to compute examples of tight interiors for ideals of S and sought to generalize these results by studying the effect adjusting the complex had on interiors and hulls.

Figure: Simplicial complexes can be constructed from n-dimensiona tetrahedra.

Example Ring By considering the minimal non-

$$
x_{2}<x_{x_{3}}^{x_{1}} \quad \longrightarrow \quad k[\Delta]=\frac{k\left[x_{1}, x_{2}, x_{3}\right]}{\left(x_{1} x_{3}\right)}
$$

In the ordinary polynomial ring, there cannot exist
$g \in k\left[x_{1}, x_{2}, x_{3}\right]$ such that $g \cdot\left(x_{3}+1\right)=x_{1}$. This does not hold in $k[\Delta]$ since $x_{1}\left(x_{3}+1\right)=x_{1} x_{3}+x_{1}=0+x_{1}=x_{1}$.

ideals of Commutative Rings

A subset $/$ of a commutative ring R is an ideal of R if:

- $0_{R} \in I$
- $/$ is closed under same addition as R
- Every element in I has an additive inverse contained in I
- $r \cdot i \in I \forall i \in I$ and $r \in R$

The set of all elements in $r \in R$ such that $r=a \cdot b$ for some $b \in R$ is called the ideal generated by a and is written (a). Given n ideals $\left(a_{1}\right),\left(a_{2}\right), \ldots,\left(a_{n}\right),\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the smallest ideal containing all $\left(a_{i}\right)$

Interior Operations

Let $/$ and J be ideals of a ring R. An operation
int : Ideals of $R \rightarrow$ Ideals of R is called an interior operation if:

- $I_{\text {int }} \subseteq 1$
- $\left(l_{\text {int }}\right)_{\text {int }}=l_{\text {int }}$
- For $I \subseteq J, I_{\text {int }} \subseteq J_{\text {int }}$

Our research focuses on the tight interior operation, or I_{*}.

*-hulls

Let I_{S} be the set of ideals J with $I \subseteq J, J_{*}=I_{*}$. Then,

$$
*-h u l l(I)=\sum_{J_{i} \in I_{s}} J_{i}
$$

We say that all J_{i} are ${ }^{*}$-expansions of I. We can define int-hulls for other interior operations, but we only focused on the *-hull this semester.
Abstract Simplicial Complexes
An abstract simplicial complex is a collection Δ of subsets of $\left\{x_{1}\right.$,
$\left.x_{n}\right\}$ (called faces) such that

- If F is a face of Δ, and F^{\prime} is any nonempty subset of F, then F^{\prime} is also a face of Δ
- For any two faces F_{1}, F_{2} of $\Delta, F_{1} \cap F_{2}$ is also a face of Δ

Figure: Example of a simplicial complex. An edge or filled in face represents the connected vertices being in the same face of Δ.
Theorem (Vassilev 2021) - Tight interior
Let P_{1}, \ldots, P_{m} be the minimal prime ideals of a Stanley-Reisner ring S. Then the tight interior of an ideal $I \subseteq S$ is
$A n n_{R}\left(P_{i}\right) \cap I$

Theorem 1 (Results in $k\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1} x_{3}\right)$)

$1 I=\left(x_{1}\right) \cap I+\left(x_{3}\right) \cap I$

2 If $x_{1}, x_{3} \in I$, then $I_{*}=\left(x_{1}, x_{3}\right)$ and $*-\operatorname{hull}(I)=S$
3 If $p \in\left(x_{1}\right)$ or $p \in\left(x_{3}\right)$, then $(p)_{*}=(p)$
$4\left(x_{2}, x_{3}\right)_{*}=\left(x_{1} x_{2}, x_{3}\right)$ where $\left(x_{2}, x_{3}\right)$ is a maximal *-expansion for $\left(x_{1} x_{2}, x_{3}\right)$.
5 Many specific examples: $\left(x_{3}+1\right)_{*}=\left(x_{1}, x_{3}^{2}+x_{3}\right)$, $\left(x_{2}\right)_{*}=\left(x_{1} x_{2}, x_{2} x_{3}\right)$, etc
Let $\Delta=\Delta_{1} \sqcup \Delta_{2}$ be a disjoint union of two simplicial complexes and $S_{i}=k\left[\Delta_{i}\right]$. Let $I_{*}^{\left(S_{i}\right)}$ denote the computations of tight interior for $I \subset S$ as if it were an ideal in a Stanley-Reisner ring $k\left[\Delta_{i}\right]$. That is, the expression $l_{*}^{\left(S_{1}\right)}$ is the extension of the tight interior formula for S_{1} extended to ideals in $S=k[\Delta]$. Then we have $I_{*}^{(S)}=I_{*}^{\left(S_{1}\right)}+I_{*}^{\left(S_{2}\right)}$
$x_{2}<{ }_{x}^{x_{1}} \quad y_{2}<{ }_{x_{3}}^{y_{1}}$

Figure: Disjoint union of identical simplical complexes.
Ex: Let $I=\left(x_{2}, x_{3}\right)$. Then applying Theorem 1 , we obtain

$$
\begin{aligned}
I_{*}^{(S)}=I_{*}^{\left(S_{1}\right)}+I_{*}^{\left(S_{2}\right)} & =\left(x_{1} x_{2}, x_{2} x_{3}\right)+\left(y_{1} x_{2}, y_{2} x_{3}\right) \\
& =\left(x_{1} x_{2}, x_{2} x_{3}, y_{1} x_{2}, y_{2} x_{3}\right)
\end{aligned}
$$

Let $\Delta=\Delta_{1} \cup_{p} \Delta_{2}$ be the resulting simplicial complex from gluing the simplicial complexes Δ_{1} and Δ_{2} at a common non-isolated (in both Δ_{1} and Δ_{2}) point p, i.e taking the wedge product. Using the notation from before, if the vertices of Δ_{1} are x_{1}, \ldots, x_{m}, p and the vertices of Δ_{2} are y_{1}, \ldots, y_{n}, p, then we have
$l_{*}^{(S)}=l_{*}^{\left(S_{1}\right)} \cap\left(x_{1}, \ldots, x_{m}\right)+l_{*}^{\left(S_{2}\right)} \cap\left(y_{1}, \ldots, y_{n}\right)$.

$$
{ }_{x_{3}}^{x_{1}}
$$

Figure: Simplicial complex obtained by letting $x_{2}=y_{2}=p$ in the previous example.

Example Interior
Consider the ideal (p) in Δ from Theorem 3. The two pieces of Δ are identical to the complex used in Theorem 1. Therefore, $I_{*}^{\left(S_{1}\right)}=\left(x_{1}\right) \cap I+\left(x_{3}\right) \cap I$ and $I_{*}^{\left(S_{2}\right)}=\left(y_{1}\right) \cap I+\left(y_{2}\right) \cap I$. Thus, $(p)_{*}^{\left(S_{1}\right)}=\left(p x_{1}, p x_{3}\right)$ and $(p)_{*}^{\left(S_{2}\right)}=\left(p y_{1}, p y_{3}\right)$. Using Theorem 3 we obtain
$(p)_{*}^{(S)}=(p)_{*}^{\left(S_{1}\right)} \cap\left(x_{1}, x_{3}\right)+(p)_{*}^{\left(S_{2}\right)} \cap\left(y_{1}, y_{3}\right)=\left(p x_{1}, p x_{2}, p y_{1}, p y_{2}\right)$. Theorem 4
Let Δ be a tree that is not the line segment with endpoints p_{1}, \ldots, p_{m}. Then
$I_{*}=I \cap\left(p_{1}\right.$,
,$\left.p_{m}\right)$.
Theorem 5
Let $\Delta=\Delta_{1}$
Let $\Delta=\Delta_{1} \cup_{p_{1}}, p_{d} \Delta_{2}$ be the resulting simplicial complex from gluing the simplicial complexes Δ_{1} and Δ_{2} along the common non-isolated (in both Δ_{1} and Δ_{2}) points p_{1}, \ldots, p_{d}. If the vertices of Δ_{1} are $x_{1}, \ldots, x_{m}, p_{1}, \ldots, p_{d}$ and the vertices of Δ_{2} are $y_{1}, \ldots, y_{n}, p_{1}, \ldots, p_{d}$, then we have

$$
l_{*}^{(S)}=I_{*}^{\left(S_{1}\right)} \cap\left(x_{1}, \ldots, x_{m}\right)+I_{*}^{\left(S_{2}\right)} \cap\left(y_{1}, \ldots, y_{n}\right)
$$

Future Explorations

- Calculate more examples of hulls for ideals in Stanley-Reisner rings
- Use the results from this semester to classify interiors for more complicated Stanley-Reisner rings.
- Relate the homology of a complex to interiors and hulls

Acknowledgements

We would like to thank our professor advisor, Dr. R.G, and our graduate student mentor, John Kent, for the guidance they provided this semester with our research. We also thank Janet Vassilev for allowing us to use her results in our

References
1 Epstein, N., R.G., R., and Vassilev, J. (2020). Nakayama closures, interior Epstein, N., R.G., R., and Vassilev, J. (2020). Nakayama clo
operations, and core-hull duality. ArXiv:2007.12209 [Math]. operations, and core-hull duality.
http://arxiv.org/abs/2007.12209
2 Vassilev, J. (2021). Tight Closures and Interiors and Related Structures in
Rings of Characteristic $p>0$. (Work in progress)
3 Epstein, N., and Scchwede, K. (2014). A dual to tight closure theory
Nagoya Mathematical Journal, 213, 41-75.
https://doi. org/10.1215/00277630-2376749
4 Francisco C.A., Mermin J., Schweig J. (2014) A Survey of Stanley-Reisner
Theory. In: Cooper S., Sather-Wagstaff S. (eds) Connections Between Algebra, Combinatoricis, and Geometry. Springer Proceedings it
Mathematics and Statistics, vol 76 . Springer, New York, NY.
Mathematics and Statistics, vol 76. Springer,
https://doi.org/10.1007/978-1-4939-0626-0.5

