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Stanley-Reisner Rings
Stanley-Reisner rings are a class of quotient rings found in

combinatorial commutative algebra. If I is a square-free
monomial ideal (generated by product of variables with degree 1)
in k[x1, . . . , xn], then S = k[x1, . . . , xn]/I is a Stanley-Reisner
Ring. In a Stanley-Reisner ring, every polynomial previously in I
now behaves as the zero ring element.

Crucial in understanding Stanley-Reisner rings are the
simplicial complexes associated to each Stanley-Reisner ring. We
used this association to compute examples of tight interiors for
ideals of S and sought to generalize these results by studying the
effect adjusting the complex had on interiors and hulls.

Figure: Simplicial complexes can be constructed from n-dimensional
tetrahedra.

Example Ring
By considering the minimal non-faces of ∆ given below, we can
make the following association:

x2

x1

x3

−→ k[∆] =
k[x1, x2, x3]

(x1x3)

In the ordinary polynomial ring, there cannot exist
g ∈ k[x1, x2, x3] such that g · (x3 + 1) = x1. This does not hold in
k[∆] since x1(x3 + 1) = x1x3 + x1 = 0 + x1 = x1.

Ideals of Commutative Rings
A subset I of a commutative ring R is an ideal of R if:

0R ∈ I

I is closed under same addition as R

Every element in I has an additive inverse contained in I

r · i ∈ I ∀ i ∈ I and r ∈ R

Finitely Generated Ideals
The set of all elements in r ∈ R such that r = a · b for some
b ∈ R is called the ideal generated by a and is written (a). Given
n ideals (a1), (a2), . . . , (an), (a1, a2, . . . , an) is the smallest ideal
containing all (ai).

Interior Operations
Let I and J be ideals of a ring R . An operation
int : Ideals of R→ Ideals of R is called an interior
operation if:

Iint ⊆ I

(Iint)int = Iint
For I ⊆ J , Iint ⊆ Jint

Our research focuses on the tight interior operation, or
I∗.

*-hulls
Let IS be the set of ideals J with I ⊆ J , J∗ = I∗. Then,

∗ − hull(I ) =
∑
Ji∈IS

Ji

We say that all Ji are *-expansions of I . We can
define int-hulls for other interior operations, but we only
focused on the *-hull this semester.

Abstract Simplicial Complexes
An abstract simplicial complex is a collection ∆ of
subsets of {x1, . . . , xn} (called faces) such that

If F is a face of ∆, and F ′ is any nonempty subset
of F , then F ′ is also a face of ∆

For any two faces F1, F2 of ∆, F1 ∩ F2 is also a face
of ∆
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Figure: Example of a simplicial complex. An edge or filled in face
represents the connected vertices being in the same face of ∆.

Theorem (Vassilev 2021) - Tight interior
Let P1, . . . ,Pm be the minimal prime ideals of a
Stanley-Reisner ring S . Then the tight interior of an
ideal I ⊆ S is

I∗ =
m∑
i=1

AnnR(Pi) ∩ I

Theorem 1 (Results in k[x1, x2, x3]/(x1x3))
1 I∗ = (x1) ∩ I + (x3) ∩ I .

2 If x1, x3 ∈ I , then I∗ = (x1, x3) and ∗ − hull(I ) = S .

3 If p ∈ (x1) or p ∈ (x3), then (p)∗ = (p).

4 (x2, x3)∗ = (x1x2, x3) where (x2, x3) is a maximal
∗-expansion for (x1x2, x3).

5 Many specific examples: (x3 + 1)∗ = (x1, x
2
3 + x3),

(x2)∗ = (x1x2, x2x3), etc.

Theorem 2
Let ∆ = ∆1 t∆2 be a disjoint union of two simplicial

complexes and Si = k[∆i ]. Let I
(Si)
∗ denote the

computations of tight interior for I ⊂ S as if it were an
ideal in a Stanley-Reisner ring k[∆i ]. That is, the

expression I
(S1)
∗ is the extension of the tight interior

formula for S1 extended to ideals in S = k[∆]. Then we

have I
(S)
∗ = I

(S1)
∗ + I

(S2)
∗ .
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Figure: Disjoint union of identical simplical complexes.

Ex: Let I = (x2, x3). Then applying Theorem 1, we
obtain

I (S)
∗ = I (S1)

∗ + I (S2)
∗ = (x1x2, x2x3) + (y1x2, y2x3)

= (x1x2, x2x3, y1x2, y2x3)

Theorem 3
Let ∆ = ∆1 ∪p ∆2 be the resulting simplicial complex
from gluing the simplicial complexes ∆1 and ∆2 at a
common non-isolated (in both ∆1 and ∆2) point p, i.e.
taking the wedge product. Using the notation from
before, if the vertices of ∆1 are x1, . . . , xm, p and the
vertices of ∆2 are y1, . . . , yn, p, then we have

I (S)
∗ = I (S1)

∗ ∩ (x1, . . . , xm) + I (S2)
∗ ∩ (y1, . . . , yn).
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Figure: Simplicial complex obtained by letting x2 = y2 = p in the
previous example.

Example Interior
Consider the ideal (p) in ∆ from Theorem 3. The two pieces of
∆ are identical to the complex used in Theorem 1. Therefore,

I
(S1)
∗ = (x1) ∩ I + (x3) ∩ I and I

(S2)
∗ = (y1) ∩ I + (y2) ∩ I . Thus,

(p)
(S1)
∗ = (px1, px3) and (p)

(S2)
∗ = (py1, py3). Using Theorem 3 we

obtain

(p)(S)
∗ = (p)(S1)

∗ ∩ (x1, x3) + (p)(S2)
∗ ∩ (y1, y3) = (px1, px2, py1, py2).

Theorem 4
Let ∆ be a tree that is not the line segment with endpoints
p1, . . . , pm. Then

I∗ = I ∩ (p1, . . . , pm).

Theorem 5
Let ∆ = ∆1 ∪p1,...,pd ∆2 be the resulting simplicial complex from
gluing the simplicial complexes ∆1 and ∆2 along the common
non-isolated (in both ∆1 and ∆2) points p1, . . . , pd . If the
vertices of ∆1 are x1, . . . , xm, p1, . . . , pd and the vertices of ∆2

are y1, . . . , yn, p1, . . . , pd , then we have

I (S)
∗ = I (S1)

∗ ∩ (x1, . . . , xm) + I (S2)
∗ ∩ (y1, . . . , yn).

Future Explorations
Calculate more examples of hulls for ideals in Stanley-Reisner
rings.

Use the results from this semester to classify interiors for
more complicated Stanley-Reisner rings.

Relate the homology of a complex to interiors and hulls.
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