Combinatorial Formulas for the Equivariant Cohomology of Peterson Varieties

Swan Klein, Connor Mooney
 Advised by: Rebecca Goldin, Quincy Frias

Mason Experimental Geometry Lab

December 10, 2021

Introduction

- We look at a variety X and a subvariety Y and consider a
circle S acting on X, under which Y is invariant.
- We associate to each space a graded ring.
- Given $Y \stackrel{\iota}{\hookrightarrow} X$, there is a natural induced surjective map $\iota^{*}: H_{S}^{*}(X) \rightarrow H_{S}^{*}(Y)$ which we want to describe.
- $H_{S}^{*}(X)$ and $H_{S}^{*}(Y)$ each have a module basis we want to explore.

Complete Flag Variety

$$
X=F /\left(\mathbb{C}^{n}\right)=\left\{0 \subset V_{1} \subset \cdots \subset V_{n-1} \subset \mathbb{C}^{n} \mid \operatorname{dim}\left(V_{i}\right)=i\right\}
$$

Each point in X is a chain of vector spaces. ?

$$
\mathbb{R}^{0} \subseteq \mathbb{R}^{1} \subseteq \mathbb{R}^{2}
$$

Peterson Variety

The Peterson variety Y is the collection of complete flags satisfying the condition $M V_{i} \subset V_{i+1}$ for $1 \leq i \leq n-1$ where M is a principal nilpotent operator
Equivariant Cohomology
S acts on Y with isolated fixed points, indexed by subsets $A \subseteq[n-1]$.
$A \subseteq[n-1]$.
Equivariant cohomology $H_{S}^{*}(Y)$ can be regarded as a subring of

$$
\bigoplus \mathbb{Q}[t]
$$

$A \subseteq[n-1]$
Every equivariant cohomology class is then represented by an 2^{n-1}-tuple of polynomials.
Schubert classes on X and on Y
Basis for $H_{s}^{*}(X)$: Schubert classes σ_{v}, indexed by elements of S_{n}. Basis for $H_{S}^{*}(Y)$: Peterson classes, p_{l} each indexed by
$I \subseteq[n]=\{1,2, \cdots n\}$. Peterson classes are all images of specific Schubert classes under ι^{*}.
Goal
The goal is to express the restriction of transposition Schubert classes to the Peterson variety as a linear combination of Peterson classes.

Useful Lemma: Let $\sigma_{u} \in H_{T}^{*}(X)$ be a Schubert class and let w_{A} be the S-fixed point of the Peterson variety Y associated to $A \subseteq\{1, \ldots, n-1\}$. Let W_{A} be reduced-word representation for w_{A} of the following form: For each continuous subset of A, without loss of generality $\{a, a+1, \cdots b\}$, we multiply
$\left(s_{a} s_{a+1} \cdots s_{b-1}\right)\left(s_{a} \cdots s_{b-2}\right) \cdots\left(s_{a} s_{a+1}\right) s_{a}$. Then

$$
\left.\iota^{*}\left(\sigma_{u}\right)\right|_{w_{A}}=\sum_{U \in \rho(u)} n_{W_{A}}(U)\left(\prod_{j \in U}\left(j-\mathcal{T}_{A}(j)+1\right)\right)
$$

where $\rho(u)$ is the set of reduced words of $u, n_{W_{A}}(U)$ is the number times the word U occurs as a subword of W_{A}, and $\mathcal{T}_{A}(j)$ is the smallest integer in the maximal consecutive subset of A containing j.

Pullback Linear Combinations and the Peterson Class Basis

We are interested in restricting elements of X to Y to obtain the Schubert classes corresponding to each element. We then can find the pullback $\iota^{*}\left(\sigma_{v}\right)$ for each element $v \in X$ and write the result as a linear combination of Peterson classes, $\iota^{*}\left(\sigma_{c}\right)$ for each $c \in C$. Equivariant Cohomology

Subword Counts:

$c_{j}=s_{1} s_{2} \cdots s_{j}$ is a subword of w_{m} where
$w_{m}=\left(s_{1} s_{2} \cdots s_{m}\right)\left(s_{1} \cdots s_{m-1}\right) \cdots\left(s_{1} s_{2}\right) s_{1}$ in $\binom{m}{j}$
different ways.
Let

$$
\begin{array}{r}
\operatorname{Br}(a, m)=\sum_{b=0}^{m-2 j+a}\binom{j+b-1}{a-1}\binom{m+a-j-b-1}{a-1} \\
\binom{j+b-a}{j-a}\binom{m-j-b}{j-a}
\end{array}
$$

Then, we have that

$$
\sum_{U} n_{W_{[m]}}(U)=\sum_{a=\max (2 j-m, 1)}^{j} \operatorname{Br}(a, m) .
$$

Conjecture

Let (i, j) be the transposition of i and j, where $i<j$, and call $m \equiv j-i$ the magnitude of the transposition. We have that

$$
\iota^{*}\left(\sigma_{(i, j)}\right)=\sum_{k=0}^{m-1} \sum_{h=0}^{k} h!\binom{k}{h}^{2}\binom{m-1}{k}^{2} t^{h} p_{\{1+i+k-m, \cdots, j+k-h-1\}}
$$

excluding terms where $1+i-k-m<1$ or $j+k-h \geq n$. For $(1, j)$, this is equivalent to stating that for all m

$$
\binom{m}{j}\binom{m-1}{j-1}=\sum_{U \in \rho((i, j))} n_{W_{[m]}}(U) .
$$

Combinatorial Insight
We represent $W_{[m]}$ as a triangle of dots, each row representing a specific transposition, the bottom s_{1}, the next s_{2}, etc., and each string $s_{1} s_{2} \cdots s_{m-b}$ corresponding to the $b^{\text {th }}$ up and right diagonal from the left. Any reduced word for $(1, j)$ has a braid index, the index of the middle transposition, which is also the only
transposition present only once in the reduced word. This middle transposition can occupy only certain spaces in $W_{[m]}$, represented by the large inverted red triangle. The other transpositions in a reduced word break into four independent groups, those in the large upright and inverted black triangles. Each individual group is either ascending or descending, and to count how many ways to fit reduced words with a specific middle transposition into $W_{[m]}$, the number for each of the four groups give binomial coefficients. Summing over all the middle transpositions with the braid index a, we get $\operatorname{Br}(a, m)$.

Acknowledgments

Dr. Rebecca Goldin and Quincy Frias made this project possible by teaching us all the material required for understanding and working on this project. We are also thankful to MEGL for facilitating our project.

References

[1]R. Goldin and B. Gorbutt, "A positive formula for type A Peterson Schubert calculus." Available:
https://arxiv.org/abs/2004.05959.
[2]M. Harada and J. Tymoczko, "A positive Monk formula in the S^{1}-equivariant cohomology of type A Peterson varieties,"
arXiv:0908.3517 [math], Aug. 2009, doi: $10.1112 / \mathrm{plms} / \mathrm{pdq} 038$. [3]S. C. Billey, "Kostant polynomials and the cohomology ring for G/B." Available: http://www.jstor.org/stable/41442.

