Stability of Traveling Waves in Nonlocal Diffusion Models

Zach Richey, Matt Holzer

Mason Experimental Geometry Lab, George Mason University

December 3, 2021

- Equilibria and stability
- Linear operators and spectrum
- Semigroup operator and bounds
- Our project
- Next semester

Consider an equation

$$u_t = \mathcal{F}(u),$$

where

- $u = u(x, t) \in X$, for some function space X,
- $\mathcal{F}(u)$ contains no time derivatives.

An **equilibrium** is a solution u^* such that $u_t^* = \mathcal{F}(u^*) = 0$.

Stability

We wish to determine the **stability** of u^* .

We do this by adding a small **perturbation** p and analyzing the solution

$$u(x, t) := u^*(x) + p(x, t).$$

If $u
ightarrow u^*$ (i.e. p
ightarrow 0) as $t
ightarrow \infty$, then u^* is **stable**.

We do a Taylor series expansion about u^* :

$$(u^* + p)_t = \mathcal{F}(u^* + p),$$

 $u_t^* + p_t = \mathcal{F}(u^*) + \mathcal{F}'(u^*)p + \frac{1}{2}\mathcal{F}''(u^*)p^2 + \dots,$
 $p_t = \mathcal{L}p + \mathcal{N}(p),$

where $\mathcal{L} := \mathcal{F}'(u^*)$ and $\mathcal{N}(p)$ is the higher order terms.

$$p_t = \mathcal{L}p + \mathcal{N}(p),$$

When p is really small, we expect $\mathcal{L}p$ to dominate.

Thus, the solution to $p_t = \mathcal{L}p$ should tell us what happens to p.

In MATH 214, we deal with the case where \mathcal{L} is a **matrix**.

In this case, every solution can be constructed from **eigenvectors**, special (nonzero) solutions such that

$$\mathcal{L}\mathbf{p} = \lambda \mathbf{p},$$

for some $\lambda \in \mathbb{C}$, called an **eigenvalue**.

Spectrum of a Matrix

Notice

$$\mathcal{L}p = \lambda p,$$

$$\mathcal{L}\boldsymbol{p} - \lambda \boldsymbol{p} = \boldsymbol{0},$$

$$(\mathcal{L} - \lambda I)p = 0,$$

and hence $(\mathcal{L} - \lambda I)$ is not invertible.

We define the spectrum of ${\cal L}$ to be

$$\sigma(\mathcal{L}) := \{\lambda \in \mathbb{C} \mid (\mathcal{L} - \lambda I)^{-1} \text{ is not defined}\}.$$

We call $(\mathcal{L} - \lambda I)^{-1}$ the **resolvent** operator.

However, these concepts don't just apply to matrices.

Spectrum of an Operator

For example, consider the linear operator $\mathcal{L}: L^{\infty} \to L^{\infty}$ defined by $\mathcal{L}f := \partial_{x}^{2}f = f_{xx}.$

An **eigenfunction** of \mathcal{L} is a function $f \in L^{\infty}$ such that

 $\mathcal{L}f = \lambda f$,

for some eigenvalue $\lambda \in \mathbb{C}$.

Similar to before, the **spectrum** of \mathcal{L} is

 $\sigma(\mathcal{L}) := \{\lambda \in \mathbb{C} \mid (\mathcal{L} - \lambda)^{-1} \text{ is not defined or is unbounded}\}.$

Although, not everything in $\sigma(\mathcal{L})$ is an eigenvalue.

For $\lambda = -1$ and $g(x) = \cos x$, we have

$$(\mathcal{L} - \lambda)^{-1}g = f \implies f_{xx} + f = \cos x \implies f(x) = f_h(x) + \frac{x}{2}\sin x$$

Recall the Laplace Transform from MATH 214:

$$ilde{
ho}(x,\lambda):=\int_0^\infty e^{\lambda t}
ho(x,t) dt, \qquad \lambda\in\mathbb{C}$$

and the fact $(\tilde{p_t}) = \lambda \tilde{p} - p_0$, where $p_0(x) = p(x, 0)$.

The Inverse Laplace Transform is given by

$$p(x,t) = rac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} \tilde{p}(x,\lambda) d\lambda,$$

where Γ is a contour in $\mathbb C$ that extends to infinity.

Pertubation Solution

Hence

$$p_t = \mathcal{L}p,$$

 $\lambda \tilde{p} - p_0 = \mathcal{L} \tilde{p},$
 $(\mathcal{L} - \lambda) \tilde{p} = p_0,$
 $\tilde{p} = (\mathcal{L} - \lambda)^{-1} p_0,$
 $p(x, t) = rac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} (\mathcal{L} - \lambda)^{-1} p_0(x) d\lambda.$

Note that Γ must avoid $\sigma(\mathcal{L})$ so that the integrand is defined.

We define the semigroup operator

$$e^{t\mathcal{L}} := rac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} (\mathcal{L} - \lambda)^{-1} d\lambda$$

so that
$$p = e^{t\mathcal{L}}p_0$$
.

If ${\mathcal L}$ is a linear operator, the $operator\ norm$ of ${\mathcal L}$ is

$$\|\mathcal{L}\| := \inf\{k > 0 : |\mathcal{L}u| \le k|u| \text{ for all } u \in X\},$$

where $|\cdot|$ is the norm on *X*.

 $\|\mathcal{L}\|$ is maximum "stretching factor" of $u \in X$,

i.e. $|\mathcal{L}u| \leq ||\mathcal{L}|| |u|$ for any $u \in X$.

Sectorial Operator

A linear operator \mathcal{L} is **sectorial** if $\sigma(\mathcal{L})$ lies in some sector of \mathbb{C} and

$$\|(\mathcal{L}-\lambda)^{-1}\|\leq rac{M}{|\lambda-\gamma|},$$

for some M > 0, where $\gamma \in \mathbb{R}$ is the vertex of the sector.

Semigroup Bounds

Theorem

If \mathcal{L} is sectorial operator with vertex γ , then

$$\|e^{t\mathcal{L}}\| \leq M e^{\gamma t}$$

for some M > 0.

Perturbation Bounds

Recall

$$p = e^{t\mathcal{L}}p_0.$$

Hence

$$|\boldsymbol{p}| \leq \|\boldsymbol{e}^{t\mathcal{L}}\||\boldsymbol{p}_0| \leq M \boldsymbol{e}^{\gamma t}|\boldsymbol{p}_0|.$$

If we can choose $\gamma < 0$, then $p \rightarrow 0$ as $t \rightarrow \infty$, just as we wanted!

Otherwise, there is no **spectral gap**, and finding a bound for |p| is trickier.

We need to use **pointwise** estimates to get more specific bounds on $||e^{\mathcal{L}t}||$.

Our Equation

The Fisher-KPP equation models population growth and spread:

$$u_t = u_{\chi\chi} + f(u), \quad f(u) = \beta u(1-u)$$

We add a **nonlocal** diffusion term:

$$u_t = u_{\chi\chi} + (J * u - u) + f(u),$$

where

$$J * u(\chi) := \int_{-\infty}^{\infty} J(\chi - y)u(y)dy, \quad J(\chi) = \frac{1}{2\alpha}e^{-\alpha|\chi|}$$
 for some $\alpha > 0$.

Consider a coordinate frame moving right with speed *c*:

$$x = \chi - ct$$

An equilibrium solution $u^*(x)$ in the (x, t) frame is a **traveling wave** in the (χ, t) frame with speed *c*.

Using the chain rule, we can rewrite in terms of x:

$$u_{t} = u_{\chi\chi} + (J * u - u) + f(u)$$
$$u_{t} - cu_{x} = u_{xx} + (J * u - u) + f(u)$$
$$u_{t} = u_{xx} + cu_{x} + J * u - u + f(u)$$

Equilibria to this equation are well studied.

We wish to study their stability.

Perturbing the Equilibrium

Let
$$u(x, t) := u^*(x) + p(x, t)$$
. Then
 $(u^* + p)_t = (u^* + p)_{xx} + c(u^* + p)_x + J * (u^* + p) - (u^* + p) + f(u^* + p)$
 $u^*_t = u^*_{xx} + cu^*_x + J * u^* - u^* + f(u^*)$
 $+p_t = +p_{xx} + cp_x + J * p - p + f'(u^*)p + \frac{1}{2}f''(u^*)p^2$
 $p_t = p_{xx} + cp_x + J * p - p + f'(u^*)p + \frac{1}{2}f''(u^*)p^2$
 $p_t = \mathcal{L}p + \mathcal{N}(p)$

where

$$\mathcal{L} = \partial_x^2 + c\partial_x + J * -1 + f'(u^*)$$

and
$$\mathcal{N}(p)=rac{1}{2}f''(u^*)p^2.$$

Zach Richey, Matt Holzer (Mason ExperimenStability of Traveling Waves in Nonlocal Diff

æ

Localizing the Kernel

$$\mathcal{L} = \partial_x^2 + c \partial_x + J * -1 + f'(u^*)$$

Recall $J(\chi) = rac{1}{2lpha} e^{-lpha |\chi|}.$

Let

$$\omega := J * p = \int_{-\infty}^{\infty} J(\chi - y)p(y)dy.$$

We can show

$$\omega_{xx} = \alpha^2 \omega - p.$$

$$\begin{cases} p_t = p_{xx} + cp_z + \omega - p + f'(u^*)p \\ 0 = \omega_{xx} - \alpha^2 \omega + p \end{cases}$$

Zach Richey, Matt Holzer (Mason ExperimenStability of Traveling Waves in Nonlocal Diff

< 1 k

э

Next Semester

1. Compute $\sigma(\mathcal{L})$ using the Fourier Transform:

$$\hat{p}(k,t) := \int_{-\infty}^{\infty} e^{-ikt} p(x,t) dx, \qquad k \in \mathbb{R}$$

 Since there is no spectral gap, we will obtain pointwise estimates of e^{Lt} using a Green's function:

$$p(x,t) = \int_{\infty}^{\infty} \mathcal{G}(x,y,t) p(y,0) dy$$
$$\mathcal{G}(x,y,t) = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} \mathcal{G}(x,y,\lambda) d\lambda$$

3. Determine linear stability from estimates on $e^{\mathcal{L}t}$.

4. Analyze nonlocal stability.

References

- M. Beck, "Stability of nonlinear waves: pointwise estimates," Discrete & Continuous Dynamical Systems, vol. 10, no. 2, pp. 191-211, 2017
- [2] M. Beck, "Topics in Stability Theory for Partial Differential Equations," Boston College, 2006
- [3] J. Carr and A. Chmaj, "Uniqueness of Travelling Waves for Nonlocal Monostable Equations," *Proceedings of the American Mathematical Society*, vol. 132, no. 8, pp. 2433-2439, 2004
- [4] G. Faye and M. Holzer, "Asymptotic stability of the critical Fisher-KPP front using pointwise estimates," *Zeitschrift für angewandte Mathematik und Physik*, vol. 70, no. 13, 2019
- [4] G. Faye and M. Holzer, "Asymptotic stability of the critical pulled front in a Lotka-Volterra competition model," *Journal of Differential Equations*, vol. 269, no. 9, pp. 6559-6601, 2020
- [6] L. Lorenzi, A. Lunardi, G. Metafune, D. Pallara, "Analytic Semigroups and Reaction-Diffusion Problems," https://people.dmi.unipr.it/ alessandra.lunardi/LectureNotes/I-Sem2005.pdf, 2005