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General Differential Equations

Consider an equation
ut = F(u),

where

u = u(x , t) ∈ X , for some function space X ,

F(u) contains no time derivatives.

An equilibrium is a solution u∗ such that u∗t = F(u∗) = 0.
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Stability

We wish to determine the stability of u∗.

We do this by adding a small perturbation p and analyzing the solution

u(x , t) := u∗(x) + p(x , t).

If u → u∗ (i.e. p → 0) as t →∞ , then u∗ is stable.

We do a Taylor series expansion about u∗:

(u∗ + p)t = F(u∗ + p),

u∗t + pt = F(u∗) + F ′(u∗)p +
1

2
F ′′(u∗)p2 + . . . ,

pt = Lp +N (p),

where L := F ′(u∗) and N (p) is the higher order terms.
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Linear Stability

pt = Lp +N (p),

When p is really small, we expect Lp to dominate.

Thus, the solution to pt = Lp should tell us what happens to p.

In MATH 214, we deal with the case where L is a matrix.

In this case, every solution can be constructed from eigenvectors, special
(nonzero) solutions such that

Lp = λp,

for some λ ∈ C, called an eigenvalue.
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Spectrum of a Matrix

Notice
Lp = λp,

Lp − λp = 0,

(L − λI )p = 0,

and hence (L − λI ) is not invertible.

We define the spectrum of L to be

σ(L) := {λ ∈ C | (L − λI )−1 is not defined}.

We call (L − λI )−1 the resolvent operator.

However, these concepts don’t just apply to matrices.
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Spectrum of an Operator

For example, consider the linear operator L : L∞ → L∞ defined by

Lf := ∂2
x f = fxx .

An eigenfunction of L is a function f ∈ L∞ such that

Lf = λf ,

for some eigenvalue λ ∈ C.

Similar to before, the spectrum of L is

σ(L) := {λ ∈ C | (L − λ)−1 is not defined or is unbounded}.

Although, not everything in σ(L) is an eigenvalue.

For λ = −1 and g(x) = cos x , we have

(L − λ)−1g = f =⇒ fxx + f = cos x =⇒ f (x) = fh(x) +
x

2
sin x
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Laplace Transform

Recall the Laplace Transform from MATH 214:

p̃(x , λ) :=

∫ ∞
0

eλtp(x , t)dt, λ ∈ C

and the fact ˜(pt) = λp̃ − p0, where p0(x) = p(x , 0).

The Inverse Laplace Transform is given by

p(x , t) =
1

2πi

∫
Γ
eλt p̃(x , λ)dλ,

where Γ is a contour in C that extends to infinity.
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Pertubation Solution

Hence
pt = Lp,

λp̃ − p0 = Lp̃,

(L − λ)p̃ = p0,

p̃ = (L − λ)−1p0,

p(x , t) =
1

2πi

∫
Γ
eλt(L − λ)−1p0(x)dλ.

Note that Γ must avoid σ(L) so that the integrand is defined.

We define the semigroup operator

etL :=
1

2πi

∫
Γ
eλt(L − λ)−1dλ

so that p = etLp0.
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Norm of an Operator

If L is a linear operator, the operator norm of L is

‖L‖ := inf{k > 0 : |Lu| ≤ k|u| for all u ∈ X},

where | · | is the norm on X .

‖L‖ is maximum ”stretching factor” of u ∈ X ,

i.e. |Lu| ≤ ‖L‖|u| for any u ∈ X .
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Sectorial Operator

A linear operator L is sectorial if σ(L) lies in some sector of C and

‖(L − λ)−1‖ ≤ M

|λ− γ|
,

for some M > 0, where γ ∈ R is the vertex of the sector.
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Semigroup Bounds

Theorem

If L is sectorial operator with vertex γ, then

‖etL‖ ≤ Meγt

for some M > 0.

etL :=
1

2πi

∫
Γ
eλt(L − λ)−1dλ
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Perturbation Bounds

Recall
p = etLp0.

Hence
|p| ≤ ‖etL‖|p0| ≤ Meγt |p0|.

If we can choose γ < 0, then p → 0 as t →∞, just as we wanted!

Otherwise, there is no spectral gap,
and finding a bound for |p| is trickier.

We need to use pointwise
estimates to get more specific
bounds on ‖eLt‖.
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Our Equation

The Fisher-KPP equation models population growth and spread:

ut = uχχ + f (u), f (u) = βu(1− u)

We add a nonlocal diffusion term:

ut = uχχ + (J ∗ u − u) + f (u),

where

J ∗ u(χ) :=

∫ ∞
−∞

J(χ− y)u(y)dy , J(χ) =
1

2α
e−α|χ| for some α > 0.
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Wave Solutions

Consider a coordinate frame moving right with speed c:

x = χ− ct

An equilibrium solution u∗(x) in the (x , t) frame is a traveling wave in
the (χ, t) frame with speed c .
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Change of Coordinates

Using the chain rule, we can rewrite in terms of x :

ut = uχχ + (J ∗ u − u) + f (u)

ut − cux = uxx + (J ∗ u − u) + f (u)

ut = uxx + cux + J ∗ u − u + f (u)

Equilibria to this equation are well studied.

We wish to study their stability.
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Perturbing the Equilibrium

Let u(x , t) := u∗(x) + p(x , t). Then

(u∗ + p)t = (u∗ + p)xx + c(u∗ + p)x + J ∗ (u∗ + p)− (u∗ + p) + f (u∗ + p)

u∗t
+pt

=
u∗xx + cu∗x + J ∗ u∗ − u∗ + f (u∗)
+pxx + cpx + J ∗ p − p + f ′(u∗)p + 1

2 f
′′(u∗)p2

pt = pxx + cpx + J ∗ p − p + f ′(u∗)p +
1

2
f ′′(u∗)p2

pt = Lp +N (p)

where
L = ∂2

x + c∂x + J ∗ −1 + f ′(u∗)

and N (p) = 1
2 f
′′(u∗)p2.
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Localizing the Kernel

L = ∂2
x + c∂x + J ∗ −1 + f ′(u∗)

Recall J(χ) =
1

2α
e−α|χ|.

Let

ω := J ∗ p =

∫ ∞
−∞

J(χ− y)p(y)dy .

We can show
ωxx = α2ω − p.


pt = pxx + cpz + ω − p + f ′(u∗)p

0 = ωxx − α2ω + p
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Next Semester

1. Compute σ(L) using the Fourier Transform:

p̂(k , t) :=

∫ ∞
−∞

e−iktp(x , t)dx , k ∈ R

2. Since there is no spectral gap, we will obtain pointwise estimates of
eLt using a Green’s function:

p(x , t) =

∫ ∞
∞
G(x , y , t)p(y , 0)dy

G(x , y , t) =
1

2πi

∫
Γ
eλtG (x , y , λ)dλ

3. Determine linear stability from estimates on eLt .

4. Analyze nonlocal stability.
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