Vertex Operator Algebras

George Andrews

George Mason University
December 3, 2021

Formal Delta Function

Definition [1]

The formal delta function is the formal series

$$
\delta(x)=\sum_{n \in \mathbb{Z}} x^{n} \in \mathbb{C}\left[\left[x, x^{-1}\right]\right] .
$$

Vertex Algebra

Definition [1]

A vertex algebra is a vector space V together with a linear map

$$
\begin{aligned}
Y(\cdot, x): V & \rightarrow(\text { End } V)\left[\left[x, x^{-1}\right]\right] \\
& v \mapsto Y(v, x)=\sum_{n \in \mathbb{Z}} v_{n} x^{-n-1}
\end{aligned}
$$

and distinguished vector $\mathbf{1} \in V$ called the vacuum vector satisfying the following conditions $\forall u, v \in V$:

- $u_{n} v=0$ for n sufficiently large (truncation condition)
- $Y(\mathbf{1}, x)=\mathrm{id}_{v}$ (vacuum property)
- $Y(v, x) \mathbf{1} \in V[[x]]$ and $\lim _{x \rightarrow 0} Y(v, x) \mathbf{1}=v$. (creation property)

$$
\begin{aligned}
0 & x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) Y\left(u, x_{1}\right) Y\left(v, x_{2}\right)-x_{0}^{-1} \delta\left(\frac{x_{2}-x_{1}}{-x_{0}}\right) Y\left(v, x_{2}\right) Y\left(u, x_{1}\right)= \\
& x_{2}^{-1} \delta\left(\frac{x_{1}-x_{0}}{x_{2}}\right) Y\left(Y\left(u, x_{0}\right) v, x_{2}\right) .(\text { Jacobi identity })
\end{aligned}
$$

Example: $V=\mathbb{C}$

Example

Define $Y(\cdot, x): \mathbb{C} \rightarrow \mathbb{C}\left[\left[x, x^{-1}\right]\right]$ by sending $v \mapsto v=\sum_{n \in \mathbb{Z}} v_{n} x^{-n-1}$ where $v_{n}=v$ if $n=-1$ and $v_{n}=0$ if $n \neq-1$. Set the vacuum vector $\mathbf{1}=1 \in \mathbb{C}$. Then $(\mathbb{C}, Y, \mathbf{1})$ has the structure of a vertex algebra.

Vertex Algebra Module

Definition [1]

Let $(V, Y, \mathbf{1})$ be a vertex algebra. A V-module is a vector space W together with a linear map

$$
\begin{aligned}
Y_{W}(\cdot, x): & V \rightarrow(\text { End } W)\left[\left[x, x^{-1}\right]\right] \\
& v \mapsto Y_{W}(v, x)=\sum_{n \in \mathbb{Z}} v_{n} x^{-n-1}
\end{aligned}
$$

satisfying the following conditions $\forall u, v \in V, w \in W$:

- $u_{n} w=0$ for n sufficiently large (truncation condition)
- $Y_{W}(\mathbf{1}, x)=$ id $_{W}$ (vacuum property)
- $x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) Y_{w}\left(u, x_{1}\right) Y_{w}\left(v, x_{2}\right)-$
$x_{0}^{-1} \delta\left(\frac{x_{2}-x_{1}}{-x_{0}}\right) Y_{W}\left(v, x_{2}\right) Y_{W}\left(u, x_{1}\right)=x_{2}^{-1} \delta\left(\frac{x_{1}-x_{0}}{x_{2}}\right) Y_{W}\left(Y\left(u, x_{0}\right) v, x_{2}\right)$ (Jacobi identity)

Examples of Modules

Theorem

Let $(V, Y, \mathbf{1})$ be a vertex algebra. Define the linear map

$$
\begin{align*}
Y_{V}(\cdot, x): V & \rightarrow(\text { End } V)\left[\left[x, x^{-1}\right]\right] \tag{1}\\
v & \mapsto Y_{V}(v, x)=\sum_{n \in \mathbb{Z}} v_{n} x^{-n-1} \equiv Y(v, x) \tag{2}
\end{align*}
$$

Then $\left(V, Y_{V}\right)$ is a V-module. (This is often called the adjoint module.)

Theorem

Any \mathbb{C}-module is of the form $\left(W, Y_{W}\right)$ where W is an arbitrary vector space and $Y_{W}(\cdot, x): \mathbb{C} \rightarrow($ End $W)\left[\left[x, x^{-1}\right]\right]$ sends $u \mapsto u$ id $_{W}$.

Vertex Operator Algebra

Definition [1]

Let $(V, Y, 1)$ be a vertex algebra. This vertex algebra combined with a conformal vector $\omega \in V$ is a vertex operator algebra if V has the \mathbb{Z}-grading

$$
\begin{equation*}
V=\bigoplus_{n \in \mathbb{Z}} V_{(n)} \tag{3}
\end{equation*}
$$

with grading restrictions $\operatorname{dim} V_{(n)}<\infty$ for all $n \in \mathbb{Z}$ and $V_{(n)}=0$ for n sufficiently negative. We define the notation wt $v \equiv n$ if $v \in V_{(n)}$. We require $1 \in V_{(0)}$ and $\omega \in V_{(2)}$. Moreover, the following additional axioms must be satisfied for $u, v \in V$: (1) the Virasoro algebra relations

$$
\begin{equation*}
[L(m), L(n)]=(m-n) L(m+n)+\frac{1}{12}\left(m^{3}-m\right) \delta_{m+n, 0} c_{V} \tag{4}
\end{equation*}
$$

for some $c_{V} \in \mathbb{C}$ called the central charge where we define the $L(n)$ by

$$
\begin{equation*}
Y(\omega, x)=\sum_{n \in \mathbb{Z}} L(n) x^{-n-2} \tag{5}
\end{equation*}
$$

(2) compatibility of $L(0)$ with the grading: $L(0) v=n v=(w t v) v$ for $n \in \mathbb{Z}$ and $v \in V_{(n)}$, and (3) the $L(-1)$-derivative property

$$
\begin{equation*}
Y(L(-1) v, x)=\frac{d}{d x} Y(v, x) \tag{6}
\end{equation*}
$$

Finite Dimensional Vertex Operator Algebras

Theorem

V is a finite dimensional commutative associative \mathbb{C}-algebra with identity $\mathbf{1}$ if and only if V is a finite dimensional vertex operator algebra (over \mathbb{C}). Moreover, the vertex operator algebra has the following structure: the conformal vector $\omega=0$, the central charge $c_{V}=0$, we have $V_{(0)}=V$ and $V_{(n)}=0$ for $n \neq 0$, and

$$
\begin{equation*}
Y(u, x) v \equiv u v \tag{7}
\end{equation*}
$$

for all $u, v \in V$.

Example

Let $V=\mathbb{C}[x] /\left(x^{d}\right)$ for $d \geq 1$. Then V is a d-dimensional vertex operator algebra where $c_{V}=0, \omega=0$, and the map
$Y(\cdot, x): V \rightarrow($ End $V)\left[\left[x, x^{-1}\right]\right]$ is defined by the usual product for the \mathbb{C}-algebra V : i.e. $Y(u, x) v=u v$.

Vertex Operator Algebra Module

Definition [1]

Let V be a vertex operator algebra. A V-module is a module W for V viewed as a vertex algebra such that

$$
\begin{equation*}
W=\bigoplus_{h \in \mathbb{C}} W_{(h)} \tag{8}
\end{equation*}
$$

where $W_{(h)}=\{w \in W \mid L(0) w=h w\}$, the subspace of W of vectors of weight h, and such that the grading restriction conditions $\operatorname{dim} W_{(h)}<\infty$ for $h \in \mathbb{C}$ and $W_{(h)}=0$ for h whose real part is sufficiently negative.

Modules of Finite Dimensional Vertex Operator Algebras

Theorem

Let V be a finite dimensional vertex operator algebra. A vector space W is a module of the vertex operator algebra V if and only if W is finite dimensional with the \mathbb{C}-grading defined by $W_{(0)}=W$ and $W_{(h)}=0$ for $h \neq 0, Y_{W}(\cdot, x)$ is constant, $\left[Y_{W}\left(u, x_{1}\right), Y_{W}\left(v, x_{2}\right)\right]=0$ for all $u, v \in V$, $Y_{W}(\mathbf{1}, x)=\mathrm{id}{ }_{W}$, and $Y_{W}(u \cdot v, x)=Y_{W}(u, x) Y_{W}(v, x)$.

References

[1] James Lepowsky and Haisheng Li. Introduction to vertex operator algebras and their representations. Vol. 227. Springer Science \& Business Media, 2004.

