Combinatorics of Cohomology Rings of the Peterson Variety

George Andrews, Taylor Fountain, Swan Klein

George Mason University, MEGL
May 14, 2021

Background: Complete Flag Variety

Definition

$$
X=F I\left(\mathbb{C}^{n}\right)=\left\{0 \subset V_{1} \subset \cdots \subset V_{n-1} \subset \mathbb{C}^{n} \mid \operatorname{dim}\left(V_{i}\right)=i\right\}
$$

The flag variety X is a space whose elements can be thought of as a chain of vector spaces. It can be represented by an $n \times n$ matrix due to the homeomorphism $F l\left(\mathbb{C}^{n}\right) \cong G l(n, \mathbb{C}) / B$ where B is the subgroup of upper triangular matrices in $G I(n, \mathbb{C})$.

Example

$$
F /\left(\mathbb{C}^{2}\right)=\left\{0 \subset V_{1} \subset \mathbb{C}^{2}\right\} \cong S^{2}
$$

Background: Peterson Variety

Definition

The Peterson variety Y is the collection of complete flags satisfying the condition $M V_{i} \subset V_{i+1}$ for $1 \leq i \leq n-1$ where M is a principal nilpotent operator.

Example

$$
\text { Let } M=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \text {. Then }\left(\begin{array}{lll}
a & b & 1 \\
b & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \in Y \forall a, b \in \mathbb{C}
$$

X has n ! fixed points, which can be represented by permutation matrices. Y has 2^{n-1} fixed points, which can be represented by block diagonal permutation matricies where each block is antidiagonal.

Background: Bruhat Order Diagrams

Figure: Bruhat order 3 Hasse Diagram

Figure: Bruhat order 4 Hasse Diagram

Research Goal

- We look at a certain variety X together with a subvariety Y and consider a circle S acting on X, under which Y is invariant.
- We associate to each space a graded ring.
- Given $Y \hookrightarrow X$, there is a natural induced surjective map $H_{S}^{*}(X) \rightarrow H_{S}^{*}(Y)$ which we want to describe.
- $H_{S}^{*}(X)$ and $H_{S}^{*}(Y)$ each have a module basis we want to explore.
- We want to find the image of the basis elements of $H_{S}^{*}(X)$ in terms of basis elements of $H_{S}^{*}(Y)$.

Equivariant Cohomology

- The equivariant cohomology $H_{T}^{*}(X)$ of a flag variety X can be regarded as a subring of

$$
\bigoplus_{S_{n}} \mathbb{Q}\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]
$$

- Every equivariant cohomology class is represented by an n!-tuple of polynomials.
- The goal is to restrict certain classes to the Peterson variety Y.

Schubert Classes

- To a certain subvarieties called Schubert varieties X^{w} of X we can associate a Schubert class $\sigma_{w} \in H_{T}^{*}(X)$. Moreover, the σ_{w} 's for $w \in S_{n}$ form a module basis for the equivariant cohomology ring.
- A subset of these classes restricted to Y form a module basis $\left\{p_{A}\right\}$ where $A \subseteq\{1, \ldots, n-1\}$ for the equivariant cohomology $H_{S}^{*}(Y)$.

Relationship Between Classes

$$
\begin{aligned}
& H_{T}^{*}(G / B) \longrightarrow H_{S}^{*}(G / B) \longrightarrow H_{S}^{*}(Y) \\
& \downarrow \downarrow \\
& H_{T}^{*}\left((G / B)^{T}\right) \longrightarrow H_{S}^{*}\left((G / B)^{S}\right) \xrightarrow[l_{p s}^{*}]{l_{S}^{*}} H^{*}\left(Y^{S}\right) \\
& \underset{w \in W}{\downarrow} H_{T}^{*} \xrightarrow{\oplus_{w \in W^{\pi}}} \stackrel{\downarrow}{\downarrow} \oplus_{w \in W}^{\downarrow} H_{S}^{*} \xrightarrow{\downarrow} \oplus_{w_{A} \in S_{n}}^{\downarrow} H_{S}^{*}
\end{aligned}
$$

Encoding Process

Once we had familiarized ourselves with the background information and computed some of these lower-order classes by hand, we moved to creating a code that would calculate these classes by hand, as well as write them as a linear combination of the basis elements

- Originally encoded in Matlab, but calculating all reduced words (permutation written as a sequence of simple reflections - not unique) of a single permutation increased computation time
- Recoded in SageMath, which has built in Permutation and Subword Complex classes, significantly reducing calculation time
- SageMath code was able to compute all classes as a linear combination of basis elements for $n=6$ in about 10 minutes.

Encoding Process cont.

```
def Billey(r,c):
    s=r.reduced_word_lexmin()
    d=c.reduced_word_lexmin()
    t=var('t')
    term=t^len(d)
    if len(d)==0:
        return term
    coeff=0
    iList=BilleyIndices(r,c)
    for I in iList:
    coeff_I=1
        for i in I:
            coeff_I*=BilleyCoeff(s[:i+1])
        coeff+=coeff_I
    return term*coeff
```

$[3,1,2,4]$	$[2,1]$	1	$[[1,[1,2]]]$
$[1,4,2,3]$	$[3,2]$	1	$[[1,[2,3]]]$
$[4,1,2,3]$	$[3,2,1]$	1	$[[1,[1,2,3]]]$
$[2,4,1,3]$	$[1,3,2]$	2	$[[2,[1,2,3]]]$
$[3,1,4,2]$	$[2,1,3]$	2	$[[2,[1,2,3]]]$
$[3,2,1,4]$	$[1,2,1]$	2	$[[t,[1,2]],[1,[1,2,3]]]$
$[1,4,3,2]$	$[2,3,2]$	2	$[[t,[2,3]],[1,[1,2,3]]]$
$[3,4,1,2]$	$[2,1,3,2]$	2	$[[2 t,[1,2,3]]]$
$[4,2,1,3]$	$[1,3,2,1]$	3	$[[2 t,[1,2,3]]]$
$[3,2,4,1]$	$[1,2,1,3]$	3	$[[2 t,[1,2,3]]]$
$[2,4,3,1]$	$[1,2,3,2]$	3	$[[2 t,[1,2,3]]]$
$[4,1,3,2]$	$[2,3,2,1]$	3	$[[2 t,[1,2,3]]]$
$[4,3,1,2]$	$[2,1,3,2,1]$	5	$\left[\left[2 t^{2},[1,2,3]\right]\right]$
$[3,4,2,1]$	$[1,2,1,3,2]$	5	$\left[\left[2 t^{2},[1,2,3]\right]\right]$
$[4,2,3,1]$	$[1,2,3,2,1]$	6	$\left[\left[2 t^{2},[1,2,3]\right]\right]$
$[4,3,2,1]$	$[1,2,1,3,2,1]$	16	$\left[\left[2 t^{3},[1,2,3]\right]\right]$

Figure: Output for $\mathrm{n}=4$

Transposition Conjecture

Let $t_{i j}$ be the transposition of i, j, where $i<j$. Let $m:=j-i$. Then

$$
i^{*}\left(\sigma_{t i j}\right)=\sum_{k=0}^{m-1} \sum_{h=0}^{k} h!\binom{k}{h}^{2}\binom{m-1}{k}^{2} t^{h} p_{\{1+i+k-m, 2+i+k-m, \ldots, j+k-h-1\}}
$$

excluding any terms where $1+i-k-m<1$ or $j+k-h \geq n$.

Transposition Pullback Examples

$$
\begin{aligned}
i^{*}\left(\sigma_{[1,2,3,4,10,6,7,8,9,5,11,12,13,14]}\right)= & 24 t^{4} p_{\{5,6,7,8,9\}}+96 t^{3} p_{\{4,5,6,7,8,9\}}+96 t^{3} p_{\{5,6,7,8,9,10\}} \\
+ & 72 t^{2} p_{\{3,4,5,6,7,8,9\}}+288 t^{2} p_{\{4,5,6,7,8,9,10\}}+72 t^{2} p_{\{5,6,7,8,9,10,11\}} \\
+ & 16 t p_{\{2,3,4,5,6,7,8,9\}}+144 t p_{\{3,4,5,6,7,8,9,10\}}+144 t p_{\{4,5,6,7,8,9,10,11\}} \\
+ & 16 t p_{\{5,6,7,8,9,10,11,12\}}+p_{\{1,2,3,4,5,6,7,8,9\}}+16 p_{\{2,3,4,5,6,7,8,9,10\}} \\
+ & 36 p_{\{3,4,5,6,7,8,9,10,11\}}+16 p_{\{4,5,6,7,8,9,10,11,12\}}+p_{\{5,6,7,8,9,10,11,12,13\}}
\end{aligned}
$$

When $i \geq m, j \leq n-m$, the coefficients for the Peterson classes of $i^{*}\left(\sigma_{t_{i j}}\right)$ can be listed as a triangle:

t^{4}	$\begin{gathered} m=4 \\ 24 \end{gathered}$	t^{5}	$\begin{gathered} m=5 \\ 120 \end{gathered}$
t^{3}	9696	t^{4}	600600
t^{2}	$72 \quad 28872$	t^{3}	6002400600
t^{1}	$\begin{array}{llll}16 & 144 & 144 & 16\end{array}$	t^{2}	20018001800200
t^{0}	$\begin{array}{lllll}1 & 16 & 36 & 16 & 1\end{array}$	t^{1}	2540090040025
		${ }^{0}$	$\begin{array}{llll}25 & 100 & 100 & 25\end{array}$

Results for restriction to the long word

- Observation: Let ϕ be the map that sends $\alpha_{i} \mapsto t$. Let $\omega=s_{i_{1}} \ldots s_{i_{m}}$ where every simple reflection $s_{i_{j}}$ commutes with every other simple reflection in the word ω. Let ν be the long word. Then

$$
\phi\left(\left[\sigma_{\omega}\right]^{\nu}\right)=t^{m} \prod_{k=1}^{m} i_{k}\left(n-i_{k}\right)
$$

- Observation: In the notation of the previous observation,

$$
\phi\left(\left[\sigma_{\nu}\right]^{\nu}\right)=\prod_{k=1}^{n-1} k!t^{k}
$$

Conjecture for a restriction formula

- Conjecture: Let ϕ be the map that sends $\alpha_{i} \mapsto t$. Let $\omega=s_{i_{1}} \ldots s_{i_{m}}$. Define the word $\omega^{\prime}=\omega s_{i_{m+1}}$. If $s_{i_{m+1}}$ commutes with every subword of ω with length 1 , then

$$
\phi\left(\left[\sigma_{\omega^{\prime}}\right]^{\nu}\right)=t \phi\left(\left[\sigma_{\omega}\right]^{\nu}\right)
$$

Moving Forward

- Use code to see how conjectures hold in higher dimensions without having to calculate classes by hand
- Formalize current conjectures and create new ones based on observations
- Investigate geometric implications of our findings - what is the relationship between the corresponding flags and their basis composition?
- Create summary of background information/findings for future researchers

Acknowledgements

Dr. Rebecca Goldin and Quincy Frias made this project possible by teaching us all the material required for understanding and working on this project. We are also thankful for their patience and availability while teaching us a large amount of unfamiliar material. We are grateful for Savannah Crawford, who made our MEGL experience more enjoyable and interesting by organizing events including the weekly seminars. We would also like to thank you for listening to our presentation today.

