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What is Capillary Action?

@ Fluid molecules stick to their
container and to each other.

@ This creates surface tension.

@ Fluid rises through its container.

@ Can happen in a tube or a porous
material.

@ Can express the force as capillary

pressure instead.
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Capillary Statics

Jurin's Law for Tubes (circa 1718)

@ heg : equilibrium height of

the fluid
. [—]
@ v : surface tension
coefficient r y
: contact angle =
- fluid density == e

: radius of tube

0
p
g : gravitational constant
r
P. : capillary pressure

Obtained by solving > F=0
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Capillary Statics: Complex Geometries

Goal: Find expressions for the vertical force and capillary pressure in terms
of saturation.

2D Example: Fluid Area Bounded by Circles
Fv(S) = mo(2Ry sin(nS) — lp)sin(7S + 6)
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Capillary Statics: Complex Geometries (Cont.)

Going from 2D to 3D, we make the transformation S — L

f(lo, Ro)

[
Figure 02: Fluid Bounded by Spheres

3D example: Volume of Fluid Bounded by Spheres

Fu(S) = 7o (2Ro sin (,c(,z)r—s};())> - ’0) " (f(/:—s;?o) " 0>

7.7789R, — 3.4231
f(lo, Ro) ~ - ‘1'53% — 0.35066Ry + 1.2225
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Porous Materials

o Washburnl*l: tube bundle
model

e Lago and Araujol?: regular
sphere packing model (more
accurate)

@ Use geometry to find capillary
pressure and equilibrium
height.

@ [2] considers one packing, but
there are several more.
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Regular Sphere Packings

=2z Rysin@Psin(P+86)

@ Regular packings made of unit
cells.

o First, calculate surface tension on
a sphere.

e We can calculate Pc(¢) for a (
regular packing.

Pénln

Pg

@ heqg =

M.E.N.L.S.C.U.S. December 04, 2020



Regular Sphere Packings (Cont.)

Packing Type | Unit Cell | APFD] P,

Simple Cubic @ 52.36% %@;9)%
rﬁ

BCC ¥ 168.02% %@f%

\ wsingsin(¢+0) 2

FCC N1 T7405% | e R
\

HCP m 7405% mwsingsin(p+0) 2y

2v/3—7 sin® [} "R

Reminder: P. = cos@ - 2% for a tube.
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Capillary Tube: Fluid Dynamics

Navier-Stokes Equations (circa 1821)

(1) ,
(a_‘t’ + i VLT) = —VP + uV2i+ pg
(2)
V-u=0
o - fluid velocity P: fluid pressure 14 viscosity
t: time p: density g: gravity

e (1) is ma = F applied to fluids.
@ (2) means the fluid is incompressible.
@ We can add extra restrictions and boundary conditions to model

capillary action.
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Capillary Dynamics in Porous Materials

Washburn Equation (1921)

h(t) = V/Dt, where D := yrcosf
2
@ Navier-Stokes solved for capillary tube
@ Extends to bundles of tubes
@ Square root function for h(t) also models r
flow between two parallel plates. @
e Assumptions: X 0

e One-dimensional flow

Approximately steady flow

Constant capillary pressure

Gravity is negligible.

No-slip condition and conservation of
mass

~: surface tension coefficient
W viscosity
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Washburn Extended to Unsteady Flow

@ Remove the assumption that the velocity is constant over time.

@ The pressure gradient does not depend on the position coordinates
but can depend on time.
. . oP
@ Special case: Assume a constant pressure gradient e —G.
z
oP P
@ More complex case: Assume — = <
0z h(t)
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Analytical Solution to Constant Pressure Gradient Case

Under a constant pressure gradient the solution is

G—pg
w(r, t) ™ (R —r?)
2(G — pg)R? 1 ry TN A,;zt
An—e p
7 ;Ang(A,,)JO( "R)e
— pg)R
h(t)_(G 3/fg) ;
21p(G — pg)R3 <= 1 - Zzt
+ 2 ;A—EHO(A,,) e PRT 1
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Integro-Differential Equations for Extended Washburn

P
Assume — = — ¢

0z —  h(t)’
The system is given by
ow 1 Pc ,ug( ow

ot ph(t)  por >+g:o

R
% - %/ w(r, t)rdr =0
0
w(R,t) =0
w(r,0) =0
h(0) = 0
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Numerical Simulation of Unsteady Flow

@ We studied an analogous problem "
involving the flow of a liquid M
confined between parallel walls. 12 /
@ It is essentially a 2-dimensional : //
problem, different from the 3-D 0s -
problems of flow in tubes. 0
@ Discretizing into a many distinct 04
x-values allows us to convert the  height °2
PDE into a system of many ODEs. % % 2 % o @ e m w % 1w

time
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Numerical Simulation Details

@ Keep assumptions
related to the
Washburn-type
model for parallel
plates, but allow
velocity to change
over time.

Assume that the meniscus is
approximately flat, and that
capillary pressure is constant.

P=P,—P atz=h(t)

@ Assume that:

oP  Pc

0z h(r)
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Experiments: Unsteady Flow
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Unsteady Flow in a Magic Eraser
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1% food coloring in DI
water solution

Fluid reservoirs at different
heights joined by plastic
tubing

In general: h o tP

Power law least-squares
approximation:

p ~ 0.2322
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Experiments: Classical Results
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Experiments: Different Porous Materials
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Experiments: Different Porous Materials

Method used: tap water in stationary fluid reservoir
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Method used: 1% food coloring in DI water, oil in stationary fluid reservoir
HGQ(OH) ~ 1.5mm Heq(water) ~ 24mm Pwater = 0.1772
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Ideas Moving Forward

Mixture Theory: How liquids and gases permeate a material

Deformable Materials: How material expansion and deformation
affect capillarity

More Simulations: Numerically solve the problem of unsteady flow
in a tube, like we did for parallel plates

Random Sphere Packings: A better approximation for porous
materials
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