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Rings

Definition

A ring is a set R equipped with two operations ”addition” + and
”multiplication” · where:

R is closed under addition
R has an additive identity 0R
R contains additive inverses for all r ∈ R
+ is associative and commutative
R is closed under multiplication
· is associative (and has identity 1)
· distributes over +

If multiplication is commutative, R is a commutative ring.

Examples of Commutative Rings

Number Rings: Z, Z2, R
Power Series Rings: Z[[t]] - Power series with integer coefficients.
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Ideals of Commutative Rings

Definition

A subset I of a commutative ring R is an ideal of R if:
0R ∈ I
I is closed under same addition as R
Every element in I has an additive inverse contained in I
r · i ∈ I ∀ i ∈ I and r ∈ R

Examples

2Z – the set of even integers is an ideal of Z. If you multiply any
non-even integer by an even one, you obtain an even integer.
The set of all power series with a factor of t in Z[[t]] is an ideal.
Example: t(t + 1) ∈ I , t2 + 1 /∈ I , t4 + t3 + t2 + t has a factor of t.
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Finitely Generated Ideals

Definition

The set of all elements in r ∈ R such that r = a · b for some b ∈ R is
called the ideal generated by a and is written (a). Given n ideals
(a1), (a2), . . . , (an), (a1, a2, . . . , an) is the smallest ideal containing all (ai ).

Example

(0) = {0} is an ideal of any ring and is contained in all other ideals
The set of power series in Z[[t]] with a factor of t2 is the ideal (t2).
The ideal (2) is the set comprised of power series with even
coefficients.
(t2, 2) = {α + a1t

2 + a2t
3 + . . . | α ∈ 2Z, ai ∈ Z} is an ideal of

Z[[t]]. Notice the ideal {a0 + a1t
2 + a2t

3 + . . . | ai ∈ Z} does
contain both (t2) and (2), but properly contains the previous set.
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Numerical Semigroup Rings

Definition

A field is a ring k where every nonzero element has a multiplicative
inverse contained in k .

Definition

Let k be an infinite field with characteristic p > 0. A numerical
semigroup ring is a power series ring k[[ts1 , ts2 , . . . , tsk ]] whose elements
are k-linear combinations of monomials of the generators. We choose
si ∈ N and gcd(s1, s2, . . . , sk) = 1.

Example

k[[t]] = {a0 + a1t + a2t
2 + . . . } contains t and t3 as elements

k[[t2, t5]] = {a0 + a1t
2 + a2t

5 + a3t
6 . . . } does NOT contain t and t3.
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Why are ideals in these rings interesting?

Ideal k[[t]] k[[t2, t5]]

(t3) Exists Does not exist

(t2) {a0t2 + a1t
3 + . . . } {a0t2 + a1t

4 + a2t
6 + a3t

7 . . . }

(t5 + t8) {a0t5 + a1t
6 + . . . } {a0(t5 + t8) + a1t

7 + a2t
9 + a3t

10 . . . }

Ideals with the same generator can be drastically different
depending on the ring
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Interior Operations

Definition

Let I and J be ideals of a ring R. An operation
int : Ideals of R→ Ideals of R is called an interior operation if:

Iint ⊆ I
(Iint)int = Iint
For I ⊆ J, Iint ⊆ Jint

Example

The mapping that takes any ideal in R to the zero ideal is an interior
operation.

Iint = (0)

The interior operation we are focused on is the tight interior. The
tight interior of an ideal is denoted by I∗
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Tight Interior

Theorem (Vassilev 2021)

Let k[[ta1 , ta2 , . . . , tai ]] be a numerical semigroup ring. Then

I∗ = (tcI , tcI+1, ..., tcI+m−1)

where cI = min{n ∈ N : tm ∈ I ∀ m ≥ n}.

Example

In the ring k[[t2, t5]], we have that (t4, t7)∗ = (t6, t7).
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*-Hull

Definition

Let IS be the set of ideals J with I ⊆ J, J∗ = I∗ Then,

∗ − hull(IS) =
∑
Ji∈IS

Ji

We say that all Ji are *-expansions of I .

Example

In the ring k[[t2, t5]], we have that , for all a ∈ k , (t2 + at5) is a maximal
*-expansion of (t4, t7), which has tight interior (t6, t7). Since
(t2 + at5)∗ = (t4, t7)∗, we see that
∗ − hull(t4, t7) =

∑
a∈k(t2 + at5) = (t2, t5).
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Motivation for tight-interior and *-hulls

Tight closure is an operation related to the singularities of a ring, and so is
a topic of active interest in commutative algebra.

The core of an ideal was originally defined using integral closure, which is
related to the results of the Briancon-Skoda Theorem, and other results in
commutative algebra. However, we can define a core for any closure
operation, such as for tight-closure.

Tight interior is a dual to tight closure [ES14], and *-hulls are a new tool
which we would like to understand in order to further our knowledge of
tight interior, tight closure, and the singularities of commutative rings.
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Visualizing ideals in k[[t2, t5]]
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Examples of Tight Interiors

Example

In k[[t2, t5]],

(t4, t7) = {a1t4 + a2t
6 + a3t

7 + . . . } =⇒ I∗ = (t6, t7)

(t6, t7) = {a1t6 + a2t
7 + . . . } =⇒ I∗ = (t6, t7)

(t2 + at5) = {a1(t2 + at5) + a2t
6 + a3t

7 + . . . } =⇒ I∗ = (t6, t7).

In these examples, cI = 6, and m = 2. Also, note that (t2 + at5) is a
maximal ideal with (t6, t7) as it’s tight interior.
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Examples of Tight Interiors with Higher Multiplicity

Now, we can look at some examples of tight interiors for rings of higher
multiplicity.

Example

In k[[t3, t5, t7]], for n ≥ 5,

(tn + atn+1 + btn+2)∗ = (tn+5, tn+6, tn+7),∀a, b ∈ k

(tn, tn+2)∗ = (tn+5, tn+6, tn+7)

(tn, tn+2, tn+4)∗ = (tn+2, tn+3, tn+4)
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Results Concerning a generic case

For any n ∈ N, we have computed a classification of the tight interiors and
∗ − hulls in rings of the form k[[t2, t2n+1]]. Let j ≥ 2n, 1 ≤ ` ≤ 2n − 1,
with ` odd, and a ∈ k . Then

Tight Interiors

(t j , t j+`)∗ = (t j+`−1, t j+`),

(t j + at j+`)∗ = (t j+2n, t j+2n+1).

*-hulls

Let p even with 2 ≤ p ≤ 2n. Then

∗ −hull(〈t j+p, t j+c+1〉) =
∑
a∈k

∑
l

p≥c−l+1

〈t j + at j+l〉 = 〈t j , t j+c+1−p〉

∗ −hull(〈t j + at j+l〉) = 〈t j + at j+l〉
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When Tight Closure coincides with *-hulls.

Theorem (Vassilev 2021)

Let R = k[[tS ]] where S is a numerical semigroup with k an infinite field
of characteristic p > 0. If I is a tightly open ideal and J is a maximal
*-expansion of I , then *-hull(I ) = J∗.

It turns out that we need the assumption that I is tightly open; i.e.
that I = I∗.
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The Theorem cannot be weakened.

Consider the ideals (t6 + at9) and (t8, t11) in k[[t2, t5]]. We note that for
each a ∈ k , (t6 + at9) is a maximal *-expansion of (t8, t11). We may then
compute that:

(t6 + at9)∗ = (t6, t7), while ∗ −hull((t8, t11)) = (t6, t9).

Note that (t8, t11) 6= (t8, t11)∗ = (t10, t11).
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Future Goals

Automate computations of tight interiors and ∗ − hulls using GAP, a
computer algebra system.

Generalize findings to other classes of numerical semigroup rings.
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