
▪ We look at a variety X and a subvariety Y and consider a
circle S acting on X, under which Y is invariant.
▪ We associate to each space a graded ring.
▪ Given Y        X, there is a natural induced surjective map
i*  : H *S         (X) → H *S         (Y) which we want to describe.
▪ H  *S         (X) and H *S         (Y) each have a module basis we want to
explore.

Let w,v be elements of the Weyl group and fix a reduced word 
b1b2  ⋯  bm for w. Billey's Formula for the polynomial 𝜎v (w) is 

𝜎𝑣(w) = ∑ rj1
rj2

  ⋯  rjk
  

where the sum is over all reduced subwords bj1bj2  ⋯  bjk 
for v in w, and for each j, rj = b1b2  ⋯  bj-1αj [3]. We began by 
implementing the formula in MatLab and later moved to 
Sage, which is like Python with many built in mathematics 
packages. We use the map H *T   (X) → H *S   (Y) to send αi to t for 
each i, after which σ𝑣(w) becomes a monomial in t.  

We are interested in restricting elements of X to Y to obtain 
the Schubert classes corresponding to each element. We can 
then find the pullback i* (𝜎𝑣 ) for each element 𝑣 ∈ X and write 
the result as a linear combination of Peterson classes, i* (𝜎c ) 
for each c ∈  C. 

Sample calculations:
𝜎[1324]([1432]) = α2 + α₃ = 2t

v = [1324] can only be written as s2, and we fix s3s2s3 for w = 
[1432]. Then Billey's Formula gives σ𝑣(w) = r2 = b₁α₂ = s₃(x₃ ˗ 
x₂) = x₄ ˗ x₂ = x₄ ˗ x₃ + x₃ ˗ x₂ = α₂ + α₃. 
i*(𝜎[2143]) = p{1,3} since [2143] can be written as s1s3 and thus is 
in C.
i* (𝜎[15432]) = 2t3p{2,3,4} + 10t2p{1,2,3,4}  
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working on this project. We are thankful for their patience and 
availability while teaching us a large amount of unfamiliar ma-
terial. We are grateful for Savannah Crawford, who made our 
MEGL experience more enjoyable by organizing events includ-
ing the weekly seminars. Poster design by Jax Ohashi.
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Complete Flag Variety
X = Fl (ℂn) = {0 ⊂ V1 ⊂   ⋯ ⊂ Vn-1 ⊂ ℂn|dim(Vi ) = i}

The flag variety X is a space whose elements can be 
thought of as a chain of vector spaces. It can be represent-
ed by an n ⨉ n matrix due to the homeomorphism Fl(ℂn) ≅ 
Gl(n,ℂ)⁄B where B is the subgroup of upper triangular ma-
trices in Gl(n,ℂ). 

Peterson Variety
The Peterson variety Y is the collection of complete flags sat-
isfying the condition MVi ⊂ Vi+1 for 1  ≤ i ≤  n ˗ 1 where M is a 
principal nilpotent operator.

Equivariant Cohomology
The equivariant cohomology H *T   (X) of a flag variety X can be 
regarded as a subring of

Every equivariant cohomology class is then represented by an 
n!-tuple of polynomials.

Basis for H *T   (X) and H*S (Y)
To each 𝑣 ∈ Sn , we can associate a Schubert class 𝜎𝑣 in H *T   (X). 
𝑣 can be written as a permutation in one-line notation, which
can in turn be represented by a product of simple reflections si 
where si transposes the elements in the ith and (i + 1)th position. 
Peterson classes pI are Schubert classes where 𝑣 ∈ C, where C is 
the set of Coxeter elements, which are all elements of X that can be 
written as a reduced word of strictly ascending simple reflections 
where no simple reflection is used more than once.
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Sage has many functions that make it faster for smaller val-
ues of n. For larger values only the MatLab code appears to 
work, while Sage seems to run forever without output. The 
most computationally expensive part is computing restric-
tions using Billey's Formula; the longest computation we did, 
computing a pullback in n = 14, took about 15 hours in Mat-
Lab. The computing time for i* (𝜎𝑣 ) with the current algo-

rithm is 𝘖(      n2).

PROGRAMMING

FIXED POINTS DIAGRAMS

The goal is to express the restriction of Schubert classes to the

Peterson variety as a linear combination of Peterson classes.
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The fixed points of Y are colored orange. The number of fixed points grows by 
n! for X and 2n for Y.
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X has n! fixed points, which can be represented by n × n permutation matrices. 
Y has 2n-1 fixed points, which can be represented by block diagonal permutation 
matrices where each block is antidiagonal.
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Billey's Formula implemented in Sage.
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Conjecture: 
Let 𝑣i ,j be [1, 2, … , n] with i and j transposed, where i < j . Let 
m = j - i be defined as the magnitude of the transposition, 
and note that 𝑣i ,j can be written in reduced word form as 
sisi+1 ⋯ sj-2sj-1sj-2 ⋯ si+1si . Then

i* (𝜎𝑣i , j
) = ∑ ∑    (  )  (    ) thp{1+i+k-m,2+i+k-m,…, j+k-h-1}

excluding any terms where 1 + i - k - m < 1 or j + k - h ≥ n. 

Observation: 
Let 𝜙 be the map that sends 𝛼i ↦ t. Let 𝜔 = si1

…sim
 where ev-

ery simple reflection sij
 commutes with every other simple 

reflection in the word 𝜔 . Let 𝑣 be the long word. Then

𝜙 (𝜎𝜔 (𝑣)) = tm∏ik(n - ik ).


