Capillary Rise in Porous Materials
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Introduction to Capillary Rise
Capillary rise is the tendency of a fluid to rise in a tube or

porous medium as a result of that fluid's surface tension. Our
goal is to model capillary rise in porous materials.

Dynamics in Porous Materials

e Washburnl! describes

porous media as
tuble-bundles, accurate
for small time scales.
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@ Hypothesis: We can
more accurately
describe fluid rise at
longer time scales using
a mixture-theory
model.
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Mixture Theory: Overview

@ Represents each point in
medium as a small volume
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Figure: A partially saturated sponge. ]. - ¢5

Classical Results: Brooks & Corey (1964)[1]

Irrigation & Drainage
@ Studied Volcanic Sand,

Fine Sand, Glass Beads,
Touchet Silt Loam,
Sandstone, and

Clay/Sandstone/Sand

Mixture

@ Account for partial
saturation and air/fluid
pressure differential

@ Assume gas/liquid phases
are immiscible, flow
within continuous porous
network
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Mixture Theory: Analysis

@ Assume only vertical flow
@ Mass balance:
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@ Momentum balance (Darcy's

t - liquid height

:¢S - solid fraction
: i :¢[-quuidfraction
Law). S
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@ Let hy be the height of the liquid @ w: liquid velocity
fraction: = BD = o — g3 Ry
dhg difference
— = WE(Z — hg) @ p. = pr — pg: capillary
dt pressure

@ K, friction coefficient

@ Boundary Conditions:

do(z =0):= ¢,
d(z=1) = ¢y
@ System of Equations:
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@ Nondimensionalization Parameters:
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@ Dimensionless form:
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@ Assume flow is quasi-steady, i.e. i 0
\ aﬁcagbé |
C(t) = kre(_@) ( 90y 07 1)
dhy  C(t)
dt ¢

Quasi-Steady Flow

@ Functional forms (from Brooks & Corey):

—gg‘; = ay(age + )7
k(o) = (age + B)°F%
Where a = 1 :ﬁ B = 1_—5;/ and ~ — %
= (ot 9 o+

Integrate using separation of variables

dhy  C(t)
dt ¢ 2
o b ay(ad, + B)*H7
oi(z=0):= ¢y, ¢z = h) := ¢y
@ Suppose gravity is negligible, i.e. g = 0:
@ [hen:
- (o) + BT — y(ad; + 5)3”)
hf(t) — \/t < ¢}(3 I ’7)
o Equilibrium Height: % = 0 occurs when C(t) = 0.
@ This implies:
req _ 1 1
C (agp+B) (ad) + B)

Numerical Simulation: Quasi-Steady Flow
@ Let F(hy) = C be the function given implicitly by (2)
t < f; h(0) < A% C(0) «+ G
While l_'f trmax :
hy < hy — (C/¢1)dt //Euler’s method

C < F(hy) //Solve with Newton’s method
t < t+dt
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@ Consistent with model in
zero-gravity case

@ Equilibrium height
consistent with model

@ Similar shape as seen in
experiments, but no
clear t'/2 or t/* regimes

Numerical Simulation: Unsteady Flow

@ Examine flow of liquid
confined between two .
parallel plates

@ Discretize into a system of
ODE's

@ Assume that the meniscus
Is approximately flat, and
that the capillary pressure
IS constant
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P=P -Patz=h(t)

@ Preserves Washburn
assumptions but allow fluid i

velocity to vary over time. /
@ Assume that
OP P.
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PDE simulation
h = kt/?

Future Directions
@ Further exploration using numerical simulation

@ Use asymptotic & perturbation methods to find an
analytic solution

@ Attempt to solve without relying upon quasi-steady
assumption

@ Incorporate material deformation
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