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Introduction to Capillary Rise
Capillary rise is the tendency of a fluid to rise in a tube or
porous medium as a result of that fluid’s surface tension. Our
goal is to model capillary rise in porous materials.

Dynamics in Porous Materials

Washburn[5] describes
porous media as
tuble-bundles, accurate
for small time scales.

Hypothesis: We can
more accurately
describe fluid rise at
longer time scales using
a mixture-theory
model.

Washburn (1921)

h` ∝ t1/2

Siddique, Anderson, Bondarev[4]

Mixture Theory: Overview

Represents each point in
medium as a small volume
containing mixture of
phases.

φ` + φg + φs = 1

S :=
φ`

1− φs

Classical Results: Brooks & Corey (1964)[1]

Account for partial
saturation and air/fluid
pressure differential

Assume gas/liquid phases
are immiscible, flow
within continuous porous
network

Capillary Pressure

pc(S) = p0
c

(
1− Sr
S − Sr

)1/λ

Relative Permeability

kr`(S) =

(
S − Sr
1− Sr

)3+2/λ

Irrigation & Drainage
Studied Volcanic Sand,
Fine Sand, Glass Beads,
Touchet Silt Loam,
Sandstone, and
Clay/Sandstone/Sand
Mixture

Plot of Capillary Pressure Head as function of Saturation[1]

Mixture Theory: Analysis

Assume only vertical flow

Mass balance:
∂φ`
∂t

= − ∂

∂z
(w`φ`)

Momentum balance (Darcy’s
Law):

∂pc
∂z

=
Ks`

φ`
w` + ∆ρg

Let h` be the height of the liquid
fraction:

dh`
dt

= w`(z = h`)

w`: liquid velocity

∆ρ = ρ` − ρg : density

difference

pc = p` − pg : capillary

pressure

Ks`: friction coefficient

Boundary Conditions:

φ`(z = 0) := φ0
`

φ`(z = 1) := φ1
`

System of Equations:

∂φ`
∂t

= − ∂

∂z

[
φ2
`

Ks`

(
∂pc
∂z
−∆ρg

)]
dh`
dt

=
φ`
Ks`

(
∂pc
∂z
−∆ρg

)∣∣∣∣
z=h`

Nondimensionalization Parameters:

z =

(
pc(φ

0
`)

∆ρg

)
z̄ , t =

µ

k0pc(φ0
`)

(
pc(φ

0
`)

∆ρg

)2

t̄,

h`(t) =

(
pc(φ

0
`)

∆ρg

)
h̄`(t), pc(φ`) =

(
1

pc(φ0
`)

)
p̄c(φ`)

Dimensionless form:
∂φ`
∂ t̄

=
∂

∂z̄

[
kr`(φ`)

(
−∂p̄c
∂φ`

∂φ`
∂z̄

+ 1

)]
dh̄`
d t̄

= −kr`(φ`)
φ`

(
−∂p̄c
∂φ`

∂φ`
∂z̄

+ 1

)∣∣∣∣
z̄=h̄`

Assume flow is quasi-steady, i.e.
∂φ`
∂ t̄

= 0

C (t̄) = kr`(φ`)

(
−∂p̄c
∂φ`

∂φ`
∂z̄

+ 1

)
dh̄`
d t̄

= −C (t̄)

φ1
`

Quasi-Steady Flow

Functional forms (from Brooks & Corey):

−∂p̄c
∂φ`

= αγ(αφ` + β)−1−γ

kr`(φ`) = (αφ` + β)3+2γ

Where α =
1− φs
1− Sr

, β =
−Sr

1− Sr
, and γ =

1

λ

C (t̄) = αγ(αφ` + β)2+γ∂φ`
∂z̄

+ (αφ` + β)3+2γ

Integrate using separation of variables

dh̄`
d t̄

= −C (t̄)

φ1
`

(1)

h`(t̄) =

∫ φ1`

φ0`

αγ(αφ` + β)2+γ

C (t̄)− (αφ` + β)3+2γ
dφ` (2)

φ`(z̄ = 0) := φ0
`, φ`(z̄ = h̄`) := φ1

`

Suppose gravity is negligible, i.e. g = 0:

Then:

h̄`(t̄) =

√
t̄

(
γ(αφ0

` + β)3+γ − γ(αφ1
` + β)3+γ

φ1
`(3 + γ)

)
Equilibrium Height:

dh̄`
d t̄

= 0 occurs when C (t̄) = 0.

This implies:

h̄eq` =
1

(αφ1
` + β)γ

− 1

(αφ0
` + β)γ

Numerical Simulation: Quasi-Steady Flow
Let F (h̄`) = C be the function given implicitly by (2)

t̄ ← t̄0; h̄`(0)← h̄0
` ; C (0)← C0

While t̄ < t̄max:
h̄`← h̄` − (C/φ1)d t̄ //Euler’s method

C ← F (h̄`) //Solve with Newton’s method

t̄ ← t̄ + d t̄

Consistent with model in
zero-gravity case

Equilibrium height
consistent with model

Similar shape as seen in
experiments, but no
clear t1/2 or t1/4 regimes

Numerical Simulation: Unsteady Flow

Examine flow of liquid
confined between two
parallel plates

Discretize into a system of
ODE’s

Assume that the meniscus
is approximately flat, and
that the capillary pressure
is constant

Preserves Washburn
assumptions but allow fluid
velocity to vary over time.

Assume that
∂P

∂z
= − Pc

h(t)

Future Directions
Further exploration using numerical simulation

Use asymptotic & perturbation methods to find an
analytic solution

Attempt to solve without relying upon quasi-steady
assumption

Incorporate material deformation
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