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Capillary Action: Dynamics of Fluid Rise and Porous Media

o Literature: Mixture Theory, Lago & Araujo, Brooks & Corey

Quasi-Steady Model: Theory, Algorithm, and Results

Unsteady Flow

Ideas Moving Forward
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What is Capillary Action?

@ Fluid molecules stick to their
container and to each other.

@ This creates surface tension.

@ Fluid rises through its container.

@ Can happen in a tube or a porous
material.
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Capillary Dynamics

Navier-Stokes Equations (circa 1821)
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@ We can add extra restrictions and boundary conditions to model
capillary action in a tube.

@ Let h be the capillary height.
Washburn Equation (1921)
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h(t) = v Dt, where D := .
o
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Porous Materials
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Siddique, Anderson, and Bondarev[]
@ Washburn's t1/2 model effective for small
t
@ Experimental results suggest different
power law for longer t

: : _ @ Lago and Araujo’s sphere packing model
Lago and AraujoB3l: regular sphere packing model more accurate fOI’ |Onger t
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Mixture Theory
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Figure: A partially saturated sponge.
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@ treats a point in the
porous media as a small
volume containing some
proportion of solid, liquid,
and gas.

@ define fluid velocity and
pressure at each point

Saturation of Porous Media
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Brooks & Corey (1964): Background

@ investigation of drainage and irrigation models

e Earlier models neglected partial saturation and air/water pressure
differential

@ assumes flow of immiscible gas/liquid phases within continuous
porous network

@ Materials studied: Volcanic Sand,
Fine Sand, Glass Beads, Silt
Loam, Sandstone, and
Clay/Sandstone/Sand mixture

o Figure: Capillary Pressure versus
Saturation. Note asymptotic
behavior as S — S,
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Brooks & Corey (1964): Models

Capillary Pressure

Relative Permeability (Burdine Equations)

S5, 3+2/A
kre(S) - (1 - Sr)

@ S := saturation
@ S, := residual saturation constant
@ )\ := pore size distribution index

M.E.N.I.S.C.US. April 30, 2021




Mixture Theory

@ Assume only vertical flow
@ Mass Balance:
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e Momentum Balance (Darcy’s Law): ' *#% e ?ﬁ °
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Figure: A partially saturated sponge.
¢e apc
Wy = K_SE Oz — Apg @ wy: liquid velocity

@ Ap = py — pg: density difference

Ks@
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2 ® pc = p— pg: capill
99 0 [¢e <3Pc 3 Apg)] pe = pe — ps: capillary pressure

® Ky friction coefficient (o< k")
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Mixture Theory (Cont.)

o Let hy be the height of the liquid

fraction:

dhy
— =wy(z=nh
g =l ) EEEE :

dh ¢ 8 = hl - liquid height

[ ¢ P, _ o raton
— = 5, < pC - Apg) g;g ¢¢ liquid fraction
dt st az z=hy ° ¢g gas fraction

. Figure: A partially saturated sponge.
@ Boundary Conditions:

. 0
gbg(z = 0) = ng
@ Ap = p¢ — pg: density difference

. 1 .
de(z = hy) == ¢ @ p. = p; — pg: capillary pressure
@ Ky friction coefficient (oc k)

@ w;: liquid velocity
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Nondimensionalization

Let's nondimensionalize this:
2
_ <Pc(¢2)> 5 F— H (pc(¢2)) F
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Dimensional Forms — Dimensionless Forms
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Quasi-steady Flow

@ Goal: Solve for hy(t)
d 0 0pc O
ad;[ a3 [ kre(oe) < @g ad)_g + 1)]

dhy _ kee(d0) < Opc 0y +1))
—he

dt 0] 0¢y 0z
@ Assume flow is quasi-steady, i.e. % =0

_ 0 856 8¢’Z
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Brooks & Corey Model

According to Brooks & Corey:

plston) = (1= g0 175
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) =: Capillary Pressure
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kee(S(0)) = <1 — Ss b¢ + . _; ) =: Relative Permeability
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kre(de) = (age + B)*T2
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Integration

@ Plug these functions into our equation:

C(0) = kaloo) (~ e 5ot +1)

C(E) = ar(ade + B 2L 4 (ady + B

@ Separation of variables:

ay(ag + B)*

=T (bt B

doy

o % an(ag + B)*H
he(t) = /¢2 C(F) — (g + B)3+27
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Numerical Simulation

dh C(t
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o Let F(hy) = C be the function given implicitly by (2)

@ Numerical approach:

t« to; ho(0) + h2; C(0) + Go
While t < tmax:

hg(— hg_—(C/gbl)di_'

C + F(hy)

t+ t+dt
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Suppose gravity is negligible, i.e. g =0:

o} 2ty
Integrate: hg(i_'):/ ¢ ay(age+ B)

¢} c(f) _W

: e L (adt + BT — y(ad) + B
Substitute (1): C(t) = G

0 d¢£

Solve ODE: d—E_Z = ) _ 7(a¢2 +8)°T — 7(0@% + B)*t

it ¢t B3+ 7)he(F)

= ((add + 83T — A(ag} + B)3H
he(t)—\/t< e o )
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Equilibrium height

C(F) =0

o 24y
o= [ g,
0

0 (agy + B)HD

req _ 1 - 1
£ (gt + 8 (agd +B)
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Numerical Results
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@ Simulation behavior consistent with model in zero-gravity case
@ Simulation equilibrium height consistent with model

o Similar shape as seen in experiments, but no clear t/2 or t/4

regimes
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Numerical Simulation of Unsteady Flow

@ We studied a problem
involving the flow of a
liquid confined between
parallel walls. 5
@ It is essentially a
2-dimensional problem,
different from the 3-D P=P, -Patz=h(t)
problems of flow in tubes.
o Discretizing into a many
distinct x-values allows us
to convert the PDE into a
system of many ODEs.
@ zero gravity, but unsteady  asume that the meniscus is approximately flat, and that capillary pressure is
fIOW constant
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Numerical Simulation Details

e Keep assumptions 181
related to the
Washburn-type
model for parallel 12}
plates, but allow
velocity to change

over time. 08}
@ Assume that: 06}
y PDE simulation
04t ——— h = ktt/?
oP Pc _
9z h(t) 0z
o . ‘ . . . ‘ ‘ . ‘ ‘
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o Further exploration using numerical simulation

@ Use asymptotic & perturbation methods to find an analytic
solution

@ Attempt to solve without relying upon quasi-steady assumption

@ Incorporate material deformation
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