
AutoPark: Path Finding with RRT*

Anton Lukyanenko, Heath Camphire, Damoon Soudbakhsh,
Avery Austin, Carlos Guerra, Samuel Schmidgall

Mason Experimental Geometry Lab

May 3rd, 2019

History

This project was started last summer by Dr.Lukyanenko and
Dr.Soudbakhsh with a simple conversation on how math and
controls intersect.

Champions

I Heath Camphire

I Abigail Shoemaker

I Jiwei Qin

I Sanjida Nasreen

Introduction

Self-Driving cars are quickly being integrated into society, but
there are still lacking any motion-planning algorithms that
effectively find paths for multiple cars.

Problem
If we have a self-driving car filled parking garage and we want to
get one of the cars out, how can we maneuver the cars around it so
that the car in question leaves the garage?

Solution
Build an efficient algorithm that
optimally maneuvers multiple
cars into specified positions.

Figure 1: Parking configurations that
require cooperative motions for the
subject car to leave

What is an optimal path, anyways?

Since cars are constrained by a turning radius, we cannot use
Euclidean distance to measure path length. So, what do we use?

This problem was solved in 1990 by Reeds and Shepp. They
concluded that there are 48 unique motion sequences that
guarantee your path will be optimal. The motion sequences are
constructed from up to 48 different combinations of motion
primitives (left curve, right curve ...)

Figure 2: 48 Reeds-Shepp motion primitive
combinations Figure 3: Optimal Trajectories in

Reeds-Shepp Space

Obstacles are in the way of optimal paths

The catch is that this only works in obstacle free environments.

Well, we still want to guarantee optimality, but in obstacle
environments the Reeds Shepp paths no longer generate optimal
trajectories

To get around this, we introduce an algorithms that maintains a
tree of trajectories that are appended together in a manner which
allows for us to eventually generate an optimal path.

Rapidly-Exploring Random-Tree*

To predict motion for a single car, the algorithm RRT* is
commonly used. Our team chose to use RRT* for the path-finding
aspect of our project.

Overview of RRT*
RRT*, which is short for Rapidly-Exploring Random-Tree*, is the
current state-of-the-art path-finding algorithm that iteratively
explores a state space.

Why RRT*?

I RRT* is unique in that it converges to the optimal solution.

I RRT* allows for differential constraints – such as a turning
radius.

RRT* Algorithm

First, a random sample is generated from the state space. In a
one-car environment this is usually an n-dimensional vector with
n-m components corresponding to rotation and the other m
corresponding to position.

Next, the nearest neighbor for that sample is found. If the path
connecting the two is obstacle free then it is added to the tree.
Finally, the key aspect that allows for the algorithm to converge to
the optimal trajectory is we check if the newly added node makes a
more optimal parent for any of the nodes nearby.

Rapidly-Exploring Random-Tree*

Multiple Car RRT* Algorithm

In our case, RRT* was not a sufficient because it only considered
the path of one car. So, our team extended the original RRT*
algorithm to work with multiple cars by maintaining a tree where
the nodes correspond to multiple car’s positons and the trajectories
are for each car respectively.

Figure 4: Reeds-Shepp RRT* Tree Visualization with 500 and 1500 nodes
respectively

Simulation

A significant portion of our effort has been on developing
simulations for multi-car RRT*.

Originally everything was done in MATLAB. This code was slow
and did not develop good paths. Since then we have rewritten all
of the code in C++ and reduced the computation time
significantly.

Prime Modulus Sampling

We also proposed a sampling procedure which has empirically
shown to generate better paths in shorter time.

ModulusArray ← [Prime1,Prime2, ...Primen]
Such that n = number of cars and Primem is unique
for i ← 0 to iterations do

positionSample ← []
for j ← 0 to numCars do

if i mod ModulusArray[j] == 0 then
positionSample[j] = (goaljX, goaljY, goaljθ)

else
positionSample[j] = (randomX, randomY, randomθ)

end
RRT*-Stuff(positionSample)

end
Algorithm 1: Prime Modulus Sampling

Implementation Goal
The idea then is to take the simulation data and experiment its
effectiveness in a pseudo real world environment. How is this done?

Figure 5: Random robot following a line.

FlockBot Implementation

Figure 6: We observe multiple AR tags using a camera. Then each robot
is sent individual commands based on its location.

Controlling the Flockbots

Closed Loop Feedback Control System

Used to determine the left and right wheel velocities, VL and VR ,
given it’s axel length, L.

V = (VR + VL)/2

ω = (VR − VL)/L

R = L(VL + VR)/2(VR − VL)

PID Error Correction

Figure 7: A high-level overview of a PID Controller

Flockbot Trust Issues

We encountered many problems throughout the semester.

I Contrast

I Gain

I Brightness

I PID tuning

I Camera dropping frames

I Wheels slipping

I Contrast

I Gain

I Brightness

I PID tuning

I Camera dropping frames

I Wheels slipping

I Saturation

I Elongated camera
coordinates

I TCP connections

I Floor reflectively

I Error tolerances

I Goal error tolerances

The most important issue being the fidelity of the Flockbots.
Initially, we could only tell if a Flockbot was on the correct path by
human sight.

Flockbot Trust Issues (cont.)

We fixed this issue by coloring pixels on the screen. We observed
the pixel coordinates of the 4 corners of the AR tags. We then
took the average to determine the center and changed its color.

Figure 8: Flockbots following a figure 8 (left)
and a circle path (right)

Play Video

Future Goals

Real-Time
In addition to the traditional simulation, we have started
developing code for RRT* to be run in real-time. This will allow
for moving obstacles and second to second tree adjustments. This
effort would involve:

I Developing an effective tree pruning algorithm

I Dynamically detecting and handling obstacles coming in and
out of frame.

I Integrating the two code bases for simulation and Flockbot
control.

	History
	Introduction

