
Geometry of Complex Networks
Savannah Crawford, Jae-Moon Hwang

Mason Experimental Geometry Lab

April 25, 2019

Abstract

A complex network is a graph, G = (V ,E ) consisting of E edges and V vertices with non-trivial features, such as sparseness, algebraic degree distribution, community structure, and exponential growth of neighbors, that often occur in graphs modeling real world systems. We aim to study the geometry
of complex networks by developing an embedding, or mapping, to a metric space that preserves its topological properties. We consider both isometric embeddings, which preserve distances, and ‘similarity’ embeddings, which relax the isometric constraints of the embedding. Our goal is to embed
complex networks into hyperbolic space, and we will explore the possible applications of this work.

Definitions
Network
A network is graph, G = (V ,E ) with adjacency
matrix A such that Aij = 1 if nodes i and j are
connected, and if not, Aij = 0.

Complex Network
A complex network is a network with non-trivial
features that do not occur in simple networks such as
lattices or random graphs but often occur in graphs
modeling real systems. General features of complex
networks include sparsity, algebraic degree distribution,
community structure, exponential growth of neighbors.

Embedding
We want to study the geometry of complex networks
by finding a map from nodes to points in a metric
space: f : V → Ωn such that f (vi) = xi .

Isometric Embedding
Original distances between nodes are preserved in
embedding: δ(vi , vj) = dΩ(f (vi), f (vj))

‘Similarity’ Embedding
If nodes are connected in graph, then they are
close in the embedding.

If nodes are not connected in graph, then they are
far apart in embedding.

dΩ(f (vi), f (vj)) ≤ α if Aij = 1

dΩ(f (vi), f (vj)) > α if Aij = 0

Example: Star Graph
Some graphs cannot embed into any metric space
isometrically, but they can be embedded with a
similarity embedding. For the graph below, if we let
α = 1, we can easily get a similarity embedding.

Why hyperbolic space?

We will use hyperbolic space Hn. Many real work networks share
similarities with trees and trees are naturally related to hyperbolic
space. Previous studies have demonstrated that real work
networks have hyperbolic features (thin triangles for example).

Poincaré Disk Model

The disk model is defined as {(x , y)|
√
x2 + y 2 < 1, x , y ∈ R}

with the origin at (0, 0). This model has a more expensive
distance metric, but it is much nicer for visualization.

Similarity Embedding

Since we are not guaranteed the existence of an isomorphic
function f : A→ H2, we proceed with the similarity embedding.
We can associate a “cost” with an embedding to determine how
close it is to ideal. To minimize the cost of our function, we
move points with respect to the gradient of the cost function.

Cost Function

Let A be the adjacency matrix of a network of n vertices and let
B be the ‘anti’ matrix such that A + B = 1nxn.

Ji =
n∑

j=1

AijΦ(dH(xi , xj)
2) +

n∑
j=1

BijΨ(dH(xi , xj)
2)

Such that Φ(z), Ψ(z), and their derivatives (φ(z) and ψ(z)
respectively) are as follows:

Φ(z) =

{
z − α2 z > α
0 z ≤ α

, φ(z) =

{
1 z > α
0 z ≤ α

Ψ(z) =

{
α2 − z z ≤ α
0 z > α

, ψ(z) =

{
−1 z ≤ α
0 z > α

where α is our parameter for connection. The first sum penalizes
connected nodes that are too far away, while the second sum
penalizes disconnected nodes that are embedded too closely.

Distance Function

dH(p1, p2) = arcosh

(
1 +

2
(

(a − x)2 + (b − y)2
)

(1− x
2 − y 2)(1− a2 − b2

))
where p1 = (x , y) and p2 = (a, b)

Gradient Descent Algorithm
In order to minimize the ‘cost’ of our embedding, we use the
gradient descent algorithm.
Data: A, adjacency matrix of G , with n nodes. α is the max

distance for two connected points. data is a set of n
random points in ΩN

Result: data which is a nx2 array for which the constraints for a
similarity are met

W := A− B ;
while pnorm > threshold do
p := 0n,2;
for 1 ≤ i ≤ n do
for i < j ≤ n do
if dH(i , j) > α and Wij = −1 OR dH(i , j) < α and Wij = 1
then pi := pi −Wij ∗ ∇Jij ;

end
end
data := data + p ∗ dt;
pnorm := norm(p, 2)

end

Example: Points travel along geodesic
If we embed a graph of two connected points and start with
initial distance > α, the points will move toward each other
along the geodesic, the shortest path between the two points.

Similarly, three points move along the geodesic toward the center
of the triangle whose vertices are the original points.

Embedding with known angular component
Some networks have a known geographic locations that may
correspond to their position in an embedding. From this
geographic component, we can place each node at the boundary
with a circle. This gives a better initial condition for the
embedding and leads to faster convergence. Below is an example
of 100 nodes that converged after 62 iterations.

Future Work
For some initial conditions, the algorithm never converges, even if
there exists a solution. This is because the gradient has found a
local minimum. We want to explore ways to better guess initial
conditions to avoid local minimums and converge faster. Once
our algorithm consistently finds low cost embeddings, we want to
use it to find embeddings of real world networks, such as the
airline transportation network.
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