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Introduction

Modulus Sampling

= After the simulations yielded good results we tested the

Norm Value comparison

= Self-driving cars are quickly being integrated into society, but Modulus Sampling is a method of sampling that was
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RRT* is an algorithm that
retains a tree structure of
nodes where the connections

between nodes are geometric T hree Car Path

Reeds-Shepp Metric Space
= If you are given two points in an N dimensional space and a car that must follow that path, how can you generate

the most optimal path from the starting point to the end point given the differential constraints imposed on the

Figure: Differential drive control system

car?’
. : RRT*
paths b_?twejg points In ;he | s Reeds and Shepp proposed in 1990 that there are no more than 48 different motion sequences in forward and
90 +
iEaCte. O af t d NEW No Iechco ) ‘E% backward vehicles that provide the optimal path from one point to another in paths that are constrained by
e tree, points are sample '

turning radius.

from the state space and . . .
o 60 = Although Reeds-Shepp curves provide an optimal path, they are expensive to compute. A large focus of our
then that point is connected . . . .
. . 50 | @ project was speeding up our code in order to balance the runtime.
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