
Cooperative Parking for Self-Driving Cars
Avery Austin, Carlos Guerra, Samuel Schmidgall Heath Camphire, Anton Lukyanenko, Damoon Soudbakhsh

Mason Experimental Geometry Lab

April 28, 2019

Introduction

� Self-driving cars are quickly being integrated into society, but
there are still lacking any motion-planning algorithms that
effectively find paths for multiple cars.

� In our work we aim to efficiently, with respect to time,
produce a motion-path that near-optimally choreographs cars
toward a specified location in our space. The purpose of
designing this algorithm is to cooperatively park self-driving
cars.

� On top of studying the properties of motion-planning
algorithms with multiple cars, we also have developed
simulations of the path-finding process and we have used the
Mason Autonomous Robotics Labs Flockbots in order to
simulate this physically.

Path Finding Algorithm
RRT* is an algorithm that
retains a tree structure of
nodes where the connections
between nodes are geometric
paths between points in the
space. To add a new node to
the tree, points are sampled
from the state space and
then that point is connected
to its nearest neighbor.
Then, the newly added node
is checked for whether or not
it makes a more optimal
parent compared to the
node’s parents around it. If
so, it becomes the new
parent for those nodes.

Three Car Path

Norm Value comparison

� We compared how generating cost using
different norm values effected the paths
generated

� It was decided that the ideal norm value is L1
and that path optimally decreases with higher
norm values up to L∞

Figure: Comparison of norms: L1(left) L∞(right)

Modulus Sampling

Modulus Sampling is a method of sampling that was
empirically shown to increase the speed of convergence.

Algorithm 1: Prime Modulus Sampling
ModulusArray ← [Prime1,Prime2, ...Primen]
Such that n = number of cars and Primem is unique
for i ← 0 to iterations do
positionSample ← []
for j ← 0 to numCars do
if i mod ModulusArray[j] == 0 then

positionSample[j] = (goaljX, goaljY, goaljθ)
else

positionSample[j] = (randX, randY, randθ)
end

end

Reeds-Shepp Metric Space
� If you are given two points in an N dimensional space and a car that must follow that path, how can you generate

the most optimal path from the starting point to the end point given the differential constraints imposed on the
car?

� Reeds and Shepp proposed in 1990 that there are no more than 48 different motion sequences in forward and
backward vehicles that provide the optimal path from one point to another in paths that are constrained by
turning radius.

� Although Reeds-Shepp curves provide an optimal path, they are expensive to compute. A large focus of our
project was speeding up our code in order to balance the runtime.

Robotics
� After the simulations yielded good results we tested the

generated paths using robots called Flockbots.

� First, we developed a simple global differential drive line
following control system. We then tuned the PID controller
and various tolerances.

� Lastly, we replicated the paths for various shapes and RRT*
paths using FlockBots.

Figure: Differential drive control system

Figure: RRT* Path Figure: Other Paths

Future Work
Integrate simulation code with FlockBot control code.

Implement real-time obstacle detection and path generation.

Geometrically prove optimal global parking garage
configurations

Learn the Reed Shepp geometry regions to reduce path
generation complexity

