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Motivation

A common question in topology is how to characterize certain
structures that lie ”above” a given topological space, say M. For
example, given that M is well connected, how can we describe
covering spaces over M? It turns out that the data of a covering
space is equivalently the data of an action of the fundamental
group at any point of M (as M is well connected this is consistent)
on a set.

That this topological question is equivalent to an algebraic one is
quite amazing. If we look at a more natural object called the
fundamental groupoid, we can state this as an equivalence of
categories Fun(Π1(M),Set) ' Cov/M

This equivalence is due to the unique path lifting property of
covering spaces. If we look at it from the algebraic side, what
happens if we change the target category?



The Relevant Categories

I Π1(M) is the fundamental groupoid of M, with the set of
objects just the set M itself, and with homotopy classes of
paths as morphisms.

I Vectf.d.R is the category of finite dimensional vector spaces and
linear maps between them.

I Given two categories C and D, Fun(C,D) is the category of
functors between them and natural transformations between
such functors.

I Bun[(Vectf.d.R ,M) is the category of vector bundles with
homotopy invariant parallel transport, and vector bundle
homomorphisms which are ”equivariant” with respect to the
transport.



Interlude: Universal Covers

Unpacking the equivalence mentioned earlier between functors
from the fundamental groupoid into sets and covering spaces over
M, there is a functor

∫
M : Fun(Π1(M),Set)→ Cov/M that takes

a functor F : Π1(M)→ Set to a covering space
∫
M F which as a

set is just the disjoint union of all the sets Fx .

We will assume from now on that we are working with a connected
manifold M, with a fixed basepoint x and fixed good cover
{Uα ↪→ M}α∈A. There is a canonical functor Hom(x ,−) that
takes every point y to the set of homotopy classes of paths ending
at y , and every path into a post-composition function. If you apply∫
M to this functor and check the automorphism group of the

cover, you will find that this is in fact the universal cover of M,
and in fact is a principal π1(M, x)-bundle as well.



From Functors to Bundles

In the case of Fun(Π1(M),Vectf.d.R ), where we have replaced the
target category, what kind of natural object can we create?
Remember that a functor from the fundamental groupoid to sets
was essentially an action of the group π1(M, x) on a set.

In a similar vein, a functor F : Π1(M)→ Vectf.d.R is kind of like a
representation of π1(M, x) on Fx . Given a principal G−bundle P
and finite dimensional representation V of G , we can create an
associated vector bundle by forming the quotient of the product
P × V / ∼, a kind of colimit. Doing something similar to this, the
fiber above y is the set of equivalence classes [γ : x → y , ~v ∈ Fy ]
equipped with a vector space structure. A natural transformation
between functors F and H in Fun(Π1(M),Vectf.d.R ) is sent to the
map that at each fiber is just the component of the natural
transformation at the basepoint of the fiber.



From Bundles to Functors

Given a vector bundle over M, we can form a function that takes
each point y of M and returns the vector space Ey . However,
there isn’t really a canonical choice of isomorphism between those
vector spaces, unless your bundle is explicitly trivial.

The notion of a linear connection on the bundle helps to alleviate
this problem, as we can give a path γ : y → z in M the job of
”transporting” different vectors along to vectors above the
endpoints of the path, providing an isomorphism between the
vector spaces above the endpoints. However, in general this is
dependent on more than just the homotopy class of the path
taken. This is because the connection has a curvature associated
with it, that you can actually compute using the transport
associated with the connection. In the case of a flat connection,
the parallel transport is actually homotopy invariant, and assembles
into a functor Π1(M)→ Vectf.d.R !



Functors = Bundles + Stuff!
We can equip our bundles-from-functors with a parallel transport,
using the fact that the universal cover has a canonical flat
connection ( and the parallel transport over that is really just the
unique path lifting property) and pulling it back to the vector
bundle. Even more interestingly, our natural transformations
respect that parallel transport! Changing perspective, vector
bundle homomorphisms that respect parallel transport can also be
made into natural transformations between the parallel transport
functors of the respective bundles. These assignments are both
functorial!

Now, given functors pointing the opposite way, we would be remiss
to not ask the obvious question of whether or not they are inverse
to each other. However, this isn’t really fair to ask of these
functors. As long as they are essentially inverses of each other, we
should consider the two categories the same. So, we can construct
natural isomorphisms between the composition of the functors and
the respective identities of the categories.


