Wave Fronts in DTDS Population Models

Zach Richey, Wyatt Rush, Mentor: Matt Holzer

George Mason University, MEGL

December 6, 2019

Zach Richey, Wyatt Rush, Mentor: Matt Hol: Wave Fronts in DTDS Population Models

Table of Contents

Introduction

- The DTDS Model
- Wave Fronts and Wave Speed
- 2 Methodology and Findings
 - Speed 1 Fronts
 - Speed $\frac{1}{2}$ Fronts
 - Speed $\frac{1}{n}$ Fronts
- 3 Current and Future Work
 - Speed $\frac{1}{3}$ Fronts
 - Irrational Speed Fronts and Speed Locking

Zach Richey, Wyatt Rush, Mentor: Matt Hol: Wave Fronts in DTDS Population Models

The Model

- Infinite one-dimensional lattice of nodes.
- Each node has a continuous population value, $u_{k,t}$.
- Each generation, population migrates, then grows.

• We focus on a capped linear growth function.

Wave Fronts and Wave Speed

• Initial condition:

$$P = (\ldots, u_{-2,0}, u_{-1,0}, u_{0,0}, u_{1,0}, u_{2,0}, \ldots) = (\ldots, 0, 0, u_0, 0, 0, \ldots)$$

• Wave front:
$$d(t) = \max_{j \in \mathbb{Z}} \{u_{j,t} = 1\}$$

• Wave speed:
$$s = \lim_{t o \infty} rac{d(t)}{t}$$

• Some waves have **rational** speeds $s = \frac{p}{q}$.

• After q generations, the wave has shifted p nodes to the right.

•
$$u_{k+p,t+q} = u_{k,t}$$
.

Example Simulation

Speed Locking

• Fixing r and c and varying m produces interesting results [1].

• "Devil's staircase" structure occurs with plateaus at rational numbers.

• This fractal pattern only occurs for some parameter choices.

Speed 1 vs. Speed Less Than 1

- Parameter Restrictions:
 - 0 < m < 1
 - 0 < c ≤ 1
 - r > 1
 - $rc \leq 1$
- Blue: Speed less than 1
- Red: Speed 1
- For this graph, $c = \frac{1}{10}$.
- Speed less than 1 only occurs when m < 2c.

Types of Speed 1 Waves:

• (1,0) Fronts:

$$P(t) = (..., 1, 1, 0, 0, 0, ...)$$

 $P(t+1) = (..., 1, 1, 1, 0, 0, ...)$

•
$$(1, \alpha, 0)$$
 Fronts:
 $P(t) = (\dots, 1, 1, \alpha, 0, 0, \dots)$
 $P(t+1) = (\dots, 1, 1, 1, \alpha, 0, \dots)$

•
$$(1, \alpha, \alpha \gamma)$$
 Fronts (Exponential Decay):
 $P(t) = (\dots, 1, 1, \alpha, \alpha \gamma, \alpha \gamma^2, \dots)$
 $P(t+1) = (\dots, 1, 1, 1, \alpha, \alpha \gamma, \dots)$

æ

Speed 1 Approach

Example: $(1, \alpha, \alpha\gamma)$ front analysis

$$(\dots, 1, 1, \alpha, \alpha\gamma, \alpha\gamma^{2}, \alpha\gamma^{3}, \dots)$$

$$(\dots, 1, 1, 1, \alpha, \alpha\gamma, \alpha\gamma^{2}, \alpha\gamma^{2}, \dots)$$

Define
$$M(x, y, z) = \frac{m}{2}x + (1 - m)y + \frac{m}{2}z$$
.
1: $M(1, \alpha, \alpha\gamma) \ge c$
2: $M(\alpha\gamma, \alpha\gamma^2, \alpha\gamma^3) < c$
 $rM(\alpha\gamma, \alpha\gamma^2, \alpha\gamma^3) = \alpha\gamma$

• A node's population is determined by its three "parents."

• Using the migration and growth equations, we can solve for **constraints** on our parameters.

Speed 1 Findings

- We were unable to find any $(1, \alpha, \alpha\gamma)$ fronts with speed 1 in practice.
- We have shown $(1, \alpha, 0)$ fronts only exist on the line rm = 2 (or $\frac{1}{r} = \frac{m}{2}$).
- Fronts off of this line degenerate to (1,0) fronts.
- If the current state is (..., 1, 1, α , 0, 0, ...), then the node to the right of α gets mapped to $\frac{rm}{2}\alpha$.

Speed $\frac{1}{2}$ Approach

Example: $(1, \alpha, \alpha\gamma)$ front analysis $P(t) = (\dots, 1, 1, \alpha, \alpha\gamma, \alpha\gamma^{2}, \alpha\gamma^{3}, \alpha\gamma^{4}, \alpha\gamma^{5}, \alpha\gamma^{6}, \dots)$ $P(t+1) = (\dots, 1, 1, \beta, \beta\gamma, \beta\gamma^{2}, \beta\gamma^{3}, \beta\gamma^{4}, \beta\gamma^{5}, \beta\gamma^{6}, \dots)$ $P(t+2) = (\dots, 1, 1, 1, \alpha, \alpha\gamma, \alpha\gamma^{2}, \alpha\gamma^{3}, \alpha\gamma^{4}, \alpha\gamma^{5}, \dots)$

Node $\alpha\gamma$ is determined by its five "grandparents." We can describe the function F such that $F(\alpha, \alpha\gamma, \alpha\gamma^2, \alpha\gamma^3, \alpha\gamma^4) = \alpha\gamma$.

- We have multiple layers; we want to relate P(t+2) back to P(t).
- This gives us a quartic polynomial in γ with coefficients determined by r and m.
- We require that γ is real and $0 < \gamma < 1$.

Speed $\frac{1}{2}$ Roots

- X: complex root
- O: real root in (0,1)
- The region where exponential decay speed ¹/₂ fronts exist is a subset of this region.
- We will continue to narrow the boundaries of this region.
- In practice, we can find $(1, \gamma, \gamma^2)$ fronts.

Speed $\frac{1}{n}$ Fronts

- Unfortunately, speed $\frac{1}{n}$ fronts cannot be pure exponential decay fronts.
- We must use a generalized wave front that **approaches** exponential decay.

• Speed
$$\frac{1}{n}$$
 fronts:
 $P(t) = (\dots, 1, 1, \alpha_1, \alpha_2, \alpha_3, \dots)$
 $P(t+1) = (\dots, 1, 1, \beta_1, \beta_2, \beta_3, \dots)$
 $\dots \dots \dots$
 $P(t+n-1) = (\dots, 1, 1, \eta_1, \eta_2, \eta_3, \dots)$
 $P(t+n) = (\dots, 1, 1, 1, \alpha_1, \alpha_2, \dots)$

• To be quasi-exponential, we add the restrictions $\lim_{m \to \infty} \frac{\alpha_{m+1}}{\alpha_m} = \lim_{m \to \infty} \frac{\beta_{m+1}}{\beta_m} = \dots = \lim_{m \to \infty} \frac{\eta_{m+1}}{\eta_m} = \gamma$

Speed $\frac{1}{3}$ Fronts

$$(\dots, 1, 1, \alpha, \alpha\gamma, \alpha\gamma^{2}, \alpha\gamma^{3}, \alpha\gamma^{4}, \alpha\gamma^{5}, \alpha\gamma^{6}, \dots)$$
$$(\dots, 1, 1, \beta, \beta\gamma, \beta\gamma^{2}, \beta\gamma^{3}, \beta\gamma^{4}, \beta\gamma^{5}, \beta\gamma^{6}, \dots)$$
$$(\dots, 1, 1, \delta, \delta\gamma, \delta\gamma^{2}, \delta\gamma^{3}, \delta\gamma^{4}, \delta\gamma^{5}, \delta\gamma^{6} \dots)$$
$$(\dots, 1, 1, 1, \alpha, \alpha\gamma, \alpha\gamma^{2}, \alpha\gamma^{3}, \alpha\gamma^{4}, \alpha\gamma^{5}, \dots)$$

- We are currently working on speed $\frac{1}{3}$ fronts.
- Now, the values of γ are the roots of a polynomial of degree 6.

•
$$\gamma^2 = (\frac{rm}{2} + r(1-m)\gamma + \frac{rm}{2}\gamma^2)^3$$

• We are working on generalizing this approach to all $\frac{1}{n}$ speeds.

•
$$\gamma^{n-1} = \left(\frac{rm}{2} + r(1-m)\gamma + \frac{rm}{2}\gamma^2\right)^n$$

Zach Richey, Wyatt Rush, Mentor: Matt Hol: Wave Fronts in DTDS Population Models

Main focus:

- What conditions cause each type of speed $\frac{1}{n}$ front?
- How can we express general speed $\frac{p}{q}$ fronts?

Additional subjects:

- What do irrational speed waves look like, and when do they occur?
- What parameter ranges cause the speed locking effect?

 [1] A.B. George, K.S. Korolev, S. Matin, C. Wang, Pinned, locked, pushed, and pulled traveling waves in structured environments, *Theoretical Population Biology* **127**, 102-109 (2019)