
Cooperative Parking for Self-Driving Cars

Anton Lukyanenko, Damoon Soudbakhsh, Heath Camphire,
Avery Austin, Samuel Schmidgall

Mason Experimental Geometry Lab

December 7th, 2018

Introduction
Self-Driving cars are quickly being integrated into society, but
there are still lacking any motion-planning algorithms that
effectively find paths for multiple cars.

The Broad Question
If we have a self-driving car filled parking garage and we want to
get one of the cars out, how can we maneuver the cars around it so
that the car in question leaves the garage?

The Not as Broad Question
Can we build an efficient algorithm that optimally maneuvers cars
into specified positions?

Research Goals from this Semester

Simulation

I Build a simulation of self-driving cars in C++.

I Build an efficient algorithm to plan self-driving car motion.

I Make the code fast.

Robotic Implementation

I Get robots to a functional state.

I Have robots follow a specified path.

I Have multiple robots all follow a path.

Rapidly-Exploring Random-Tree*
To predict motion for a single car, an algorithm titled RRT* is
commonly used. Our team chose to use RRT* for the path-finding
aspect of our project.

Overview of RRT*
RRT*, which is short for Rapidly-Exploring Random-Tree*, is the
current state-of-the-art path-finding algorithm that iteratively
explores a state space.

Why RRT*?

I RRT* is unique in that it converges to the optimal solution.

I RRT* allows for differential constraints – such as a turning
radius.

AutoPark RRT* Algorithm

In our case, RRT* was not a sufficient because it only considered
the path of one car. So, our team extended the original RRT*
algorithm to work with multiple cars.

RRT* Algorithm

Let N = Number of Iterations

T = (V ; E) RRT ∗(zinit);
T InitializeTree();
T InsertNode(∅, zstart ; T);
for (i = 0; i < N; i = i + 1) f

zrandom RandomSample();
znearest ClosestParent(T ; zrandom);
znew Drive(zrandom; znearest);
if ObstacleFreePath(znearest ; znew) then

T InsertNode(znew ; T);
T Rewire(T ; znearest ; znew);

end

g
ReturnT ;

Algorithm 1: RRT*

Reeds-Shepp Paths

How do you get from one point to another?

Imagine you’re building a program that parallel parks a car. How
many different combinations of motions (turning the car, going
straight) are required to guarantee that your program will park as
efficiently as possible.

Reeds-Shepp Paths

What is a path anyways?

I There are two types of paths commonly discussed in
path-finding; Holonomic and Non-Holonomic.

I A Non-Holonomic path has differential constraints.

I The types of motions must also be considered when defining
what a path is.

Figure 1: 200 Node Holonomic(Left) and Non-Holonomic(Right) Paths

Reeds-Shepp Paths (cont.)

Constructing Reeds-Shepp Paths

This problem was solved in 1990 by Reeds and Shepp. They
concluded that there are 48 unique motion sequences that
guarantee your path will be optimal. The motion sequences are
constructed from up to 5 different combinations of curves and
straight lines.

Figure 2: Reeds-Shepp Curve Combinations and Motion Primitives

Putting it all together

With all of our new path-finding gadgets, we are ready to generate
non-holonomic paths for our self-driving cars.

Figure 3: Reeds-Shepp RRT* Tree Visualization with 500 and 1500 nodes
respectively

The next question is, once we have it built how can we make it
fast?

Optimization

The Battle for Efficiency

I RRT* and Multiple-Car RRT* are really slow.

I To make it faster, we had to be more clever than the
algorithm.

K-D Tree
A K-D Tree is an efficient way of storing points so that you can
quickly search for the nearest points around a specified tree node.

Figure 4: 2-Dimensional K-D Tree using a nearest neighbor search

Algorithmic Progress

The Journey From MatLab to C++

The code that we had previous to this semester was written in
MatLab, therefore it was naturally really slow. To speed up the
code, we converted everything into C++.

Improvements in time

I In the previous semester we spent 66 hours computing a path
for two cars, and the path ended up being sub-optimal.

I This semester we were able to compute a similar path in
under a second.

Optimal Path Generation

The original MatLab code had been selecting an optimal motion
sequence from four options, when the total number of options
required to guarantee our path would converge to the optimal
solution was 48, which we saw earlier. During this semester we
implemented all 48 motion sequences into our C++ code.

Algorithmic Goals for the Future
I Implement a K-D Tree that computes actual distance, rather

than an approximation (Warning: Involves Sub-Riemannian
Geometry).

I Implement different variants of RRT*.
I Make the code even faster.

Figure 5: . Reachable sets and bounding boxes for a Reeds-Shepp vehicle
around a configuration q and for different values of t. (Frazzoli)

Goal and Process

The goal of this research project is to represent the motion path
generated by the RRT* path in a real world system. (Not Trivial)

Figure 6: Image of Flockbot and AR tag

FlockBots: Wandering Robot

Raspberry Pi

The raspberry pi functions as the communication point between
the laptop code and Arduino. It sends commands to the Arduino
based on the commands it is sent from a laptop.

Arduino
The Arduino is a low cost microcontroller and it is used to operate
the motor. The boards are equipped with (I/O) pins that interface
with a system to control various aspects.

Figure 7: Image of multiple Flockbots resting

AR Tracking System: Where are the Robots

Figure 8: Image of webcam calibration and AR tag taped to Flockbot

Basic Information
The ideal was to set up a global reference frame so that we could
always know the current FB position and orientation. In order to
connect the Flockbot’s code and AR tracking code we had to use a
TCP/IP server client connection.

Early Progress

Status
Initially the Flockbots rotated towards the heading to the next
point in a path, then it would move along that line. The AR
tracking system was also completed but it was not implemented to
give feedback on Flockbot motion.

Figure 9: Image of previous motion planning path and AR tag

Key Problems and Solution

Problem: Old Flockbot Motion Model

I The old model described does not account for a minimum
turning radius.

I The old model makes it hard to control velocity.

I Requires flockbot to come to a complete stop at every point
in the path.

Solution: Closed Loop Feedback Control System

V = (VR + VL)=2

! = (VR � VL)=L

R = L(VL + VR)=2(VR � VL)

Key Problems and Solution Cont.

Problem: Latency

Latency is a delay before the transfer of data following an
instruction for its transfer. The Flockbot would wait about .2 to .4
seconds before it would perform a command sent.

Solution: Reassemble Path

Figure 10: Image of line segments describing path

Block Diagram of System

Figure 11: This is a model of the Flockbot’s kinematic motion along a
given path

Real World Future Implementation Goals

I Edit code to account for multiple flockbots

I Push most of the code onto the Arduino to decrease the
effects of latency

I Tune model to account for smaller distances between points

	Introduction

