#### Asymptotic Dynamics on Arithmetic Curves

#### Marvin Castellon, Cole Miller, and Cigole Thomas Advisor: Dr. Sean Lawton

George Mason University, MEGL

December 8, 2017

Marvin Castellon, Cole Miller, and Cigole The Asymptotic Dynamics on Arithmetic Curves

#### Introduction

- Background
- Action of Elements
- Definitions
- 2 Code and Data

- Special Words
- Search for Large Orbits
- 3 q log q Conjecture
  - Statement
  - Attempts at a Proof
  - 4 Future Work

# To understand the dynamics of the action of $Out(F_2)$ on the character variety $\mathfrak{X}_{\lambda}(F_2, \operatorname{SL}_2(\mathbb{F}_q))$ .

Let  $\kappa = x^2 + y^2 + z^2 - xyz - 2$ . Then the character variety can be thought of as the solutions of  $\kappa = \lambda$  over affine 3-space.

Let  $\mathbb{F}_q$  be the finite field of q elements. We consider the equation

$$x^2 + y^2 + z^2 = axyz + b \tag{1}$$

for  $(x, y, z) \in \mathbb{F}_q^3$ , where  $a, b \in Z/(p)$  are parameters. Let  $M_{a,b}^3 \mathbb{F}_q$  be the set of points in  $\mathbb{F}_q^3$  solving this equation.

#### Theorem (J. Mariscal)

$$|M_{a,b}^{3}\mathbb{F}_{q}| = \begin{cases} q^{2} + 3\epsilon q + 1 & b = 0\\ q^{2} + 2\epsilon q + 1 & b \text{ is a quadratic residue}\\ q^{2} + 4\epsilon q + 1 & b \text{ is a nonzero-quadratic residue} \end{cases}$$
where  $\epsilon = \begin{cases} 1 & ba^{2} - 4 \text{ is a quadratic residue of } \mathbb{F}_{q}\\ -1 & ba^{2} - 4 \text{ is a quadratic non residue of } \mathbb{F}_{q}\\ 0 & ba^{2} - 4 = 0 \end{cases}$ 

Marvin Castellon, Cole Miller, and Cigole The Asymptotic Dynamics on Arithmetic Curves

-

3

Image: A mathematical states and a mathem

The polynomial  $\kappa$  arises naturally when we consider  $SL_2(k)$ -representations of the free group  $F_2$ , where k is a field. *Vogt* and *Fricke* studied such representations.

- Note first that Hom(F<sub>2</sub>, SL<sub>2</sub>(k)) can be naturally identified with H = SL<sub>2</sub>(k) × SL<sub>2</sub>(k). The group SL<sub>2</sub>(k) acts on H by componentwise conjugation.
- Define τ : H → k<sup>3</sup> by τ : (ζ, η) → (tr ζ, tr η, tr ζη). Vogt and Fricke showed that if f : H → k is regular and invariant under the conjugation action, then it factors through τ: there is a polynomial function F : k<sup>3</sup> → k such that f = F ∘ τ.

- We view τ as giving an isomorphism between k<sup>3</sup> and the quotient (suitably defined) of H by the conjugation action of SL<sub>2</sub>(k).
- We have κ(τ(ζ, η)) = tr[ζ, η], where [·, ·] is the multiplicative commutator.
- The Vogt-Fricke result lets us relate representations of  $F_2$  to polynomials over  $k^3$ .

# $\lambda = -3$ over $\mathbb{R}^3$



3

# $\lambda = -2$ over $\mathbb{R}^3$



December 8, 2017 10 / 6

3

# $\lambda = -1$ over $\mathbb{R}^3$



3



Ξ.



Marvin Castellon, Cole Miller, and Cigole Thc Asymptotic Dynamics on Arithmetic Curves

イロン イヨン イヨン イヨン



æ



- ∢ ศ⊒ ▶

э



э

æ

• • • • • • • •



э

æ

• • • • • • • •



December 8, 2017 18 / 61

э

æ

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Marvin Castellon, Cole Miller, and Cigole The Asymptotic Dynamics on Arithmetic Curves

• • • • • • • •

æ

Let  $F_2$  be the free group of rank 2, generated by  $\{\gamma_1, \gamma_2\}$ . Then  $Out(F_2) = \langle \iota, \tau, \eta \rangle$  where

$$\tau = \begin{cases} \gamma_1 \to \gamma_2 \\ \gamma_2 \to \gamma_1 \end{cases}$$
$$\iota = \begin{cases} \gamma_1 \to \gamma_1^{-1} \\ \gamma_2 \to \gamma_2 \end{cases}$$
$$\eta = \begin{cases} \gamma_1 \to \gamma_1 \gamma_2 \\ \gamma_2 \to \gamma_2 \end{cases}$$

Consider the action of the outer automorphism group of  $F_2$  on the character variety as given below.

$$\iota((x, y, z)) = (x, y, xy - z)$$
  
$$\tau((x, y, z)) = (y, x, z)$$
  
$$\eta((x, y, z)) = (z, y, yz - x)$$

#### $\iota$ on a p = 5 Variety



æ



æ

#### Definition

 $\mathcal{L}_G(q,\lambda)$  is the length of the largest *G*-orbit in  $\mathbb{V}(\kappa - \lambda)$  over  $\mathbb{F}_q$  where  $G \leq \Gamma$ .

Then define

$$egin{aligned} \mathcal{L}_{G,\mathbb{V}_{\mathbb{F}_q}} &= \max\{\mathcal{L}_G(q,\lambda) | \lambda \in \mathbb{F}_q\} \ \mathcal{L}_G^{\mathsf{avg}}(q) &= rac{1}{q} \sum_{\lambda \in \mathbb{F}_q} \mathcal{L}_G(q,\lambda) \end{aligned}$$

Let G be a group and  $\mathbb{V}$  be a variety. Suppose  $|G| \circlearrowleft \mathbb{V}_{\mathbb{F}_q}$ , for all  $q = p^n$ , for prime p.

#### Definition

 $G \circlearrowleft \mathbb{V}$  is arithmetically ergodic (AE) if

$$\lim_{q o \infty} rac{\mathcal{L}_{\mathcal{G}, \mathbb{V}_{\mathbb{F}_q}}}{|\mathbb{V}_{\mathbb{F}_q}|} = 1$$

- Find the length of largest orbit under the action on the finite field character variety.
- Ind elements that act arithmetically ergodically.

- Goal: Find non-conjugate Γ words so that have the same asymptotics of ητ. Recall we expect this to have a growth rate of q log q
- To find such words we ran the computation  $\mathcal{L}^{avg}$  for prime fields up to p = 40
- This was compared to 1, *p*, and *p* log *p*. We work with the assumption that these the only possible orders. More on this later
- $\bullet$  We found that the class of functions  $\eta^k \tau$  appear to have  $q \log q$  growth
- $\bullet\,$  The  ${\cal L}$  functions did not match identically, so these words in general are non-conjugate

- We performed this special words project with the assumption that every element was of order 1, *p*, or *p* log *p*
- Comparison was done by treating a finite data sets, x and y, as a vector and using:

$$\mathcal{C}(x,y) = \left(rac{x \cdot y}{|x||y|}
ight)^2$$

- This takes on a value close to 1 if x and y have similar asymptotics and close to 0 otherwise.
- Consistent values for C are around 0.99, giving the impression that all elements fall into one of these categories
- Classification of Order Conjecture: Every element in Γ will be asymptotic to 1, q, and q log q

- Constant order elements, other than the identity, include  $\tau, \iota, \eta \iota,$  and  $\iota \tau$
- We showed during Summer 2017 that there exists elements of linear growth rate. Examples include  $\eta^k$  and their conjugates over  $\Gamma$
- Strong experimental data suggests that at least  $\eta \tau$  has  $q \log q$  growth

- We suspect that the action of  $\Gamma$  should be arithmetically ergodic on all of the  $\kappa$  varieties
- One of our goals is to find a proper subset of Γ, S, so for all but a "small amount" of v ∈ 𝔽<sup>3</sup><sub>q</sub>:

$$\bigcup_{w \in S} \operatorname{Orb}_{\langle s \rangle}(v)$$

gives the arithmetically ergodicity result.

 $\bullet\,$  This can be thought of as not needing all of  $\Gamma$  for arithmetic ergodicity

- Our first guess for such a set were the conjugates of  $\eta \tau$ , i.e. the set  $\{\gamma \eta \tau \gamma^{-1} | \gamma \in \Gamma\}$
- This was promising in simulations that were run to p = 50. Right around p = 100 this began to fail, resulting a vanishing subset of the kappa varieties.
- Currently we have a promising set that may work. Recall the family f functions  $\eta^k \tau$
- So far our simulations give that a subset of these functions cover about 99% of the varieties

- Conjecture: As a function of q we suspect  $\mathcal{L}_{\langle \eta \tau \rangle}(q) \; q \log(q)$
- We further suspect that the family of functions  $\eta^k \tau$  also satisfy this property
- Even further we suspect that there are more  $\eta \tau$ -like elements

Linear trend suggests that  $\mathcal{L}_{\eta\tau}^{avg}$  and  $\mathcal{L}_{\eta^2\tau}^{avg}$  have  $p\log p$  growth



 $\mathcal{L}^{avg}_{n^k au}$  Against  $p\log p$  for k=1,2,2,3,5

There appears to be a pattern. They all appear as having  $p \log p$  growth, but with one set of them growing twice as fast as the others.





The Pattern: Odd powers of  $\eta$  composed with  $\tau$  grow twice as fast as the even powers.



- In the case when  $\lambda=$  2,  $\eta\tau$  takes on a Fibonacci Sequence pattern
- This equates to finding the order of the following matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

modulo some divisor of  $(q^2 - 1)p$ 

- $\bullet\,$  This allows us to find an upper bound on maximal length of an  $\langle\eta\tau\rangle\,$  orbit
- So far our experimental results are inconclusive and largely incomplete
- As for theoretical bounds this would be as difficult as studying the Pisano Periods, which is hard

- We note that  $\eta \tau$  is a 3-cycle composed with a Vieta involution
- We can attempt to analyze the orbits of the 3-cycle and of the Vieta involution and see how they interact
- Idea: count how many times the orbits of the 3-cycle connect distinct Vieta orbits.
- This may be able to place an upper bound on the order of  $\eta au$

#### Theorem (Bourgain, Gamburd and Sarnak)

Fix  $\epsilon > 0$ . Then for p large there is a  $\Gamma$  orbit C(p) in  $X^*(p)$  for which

 $|X^*(p) \setminus C(p)| \le p\epsilon$ 

(note that  $|X^*(p)| \sim p^2$ ), and any  $\Gamma$  orbit  $\mathcal{D}(p)$  satisfies

 $|\mathcal{D}(p)| \gg (logp)^{\frac{1}{3}}$ 

• The Markoff surface X is the affine surface in  $(\mathbb{Z}/p\mathbb{Z})^3$  given by  $x_1^2 + x_2^2 + x_3^2 - 3x_1x_2x_3 = 0$ .

$${\color{black}@{\hspace{0.1cm}}} X^*(p) = \mathbb{X}(\mathbb{Z}/p\mathbb{Z}) \setminus \{(0,0,0)\}$$

- **3** Define conic sections of the variety  $C_j(a) = \{x_j = a\} \cap X^*(p)$ .
- Define the incidence graph *I(p)* as the graph with the above defined cones as vertices and number of edges between *C<sub>j</sub>(a)* and *C<sub>j</sub>(b)* = |*C<sub>j</sub>(a)* ∩ *C<sub>j</sub>(a)*|.
- Then I(p) is connected and diam(I(p)) = 2.

Define 
$$rot(3x_1)\begin{pmatrix} x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} x_3\\ 3x_1x_3 - x_2 \end{pmatrix} = \begin{pmatrix} 0 & 1\\ -1 & 3x_1 \end{pmatrix} \begin{pmatrix} x_2\\ x_3 \end{pmatrix}$$

#### Theorem

If  $x = (x_1, x_2, x_3)$  is in  $X^*(p)$  and for some  $j \in 1, 2, 3$  the order of the induced rotation  $rot(x_j)$  is at least  $p^{\frac{1}{2}+\delta}(\delta > 0$  fixed), then x is joined to a point y in  $X^*(p)$  one of whose induced rotations is of maximal order.

40 / 61

A point  $x = (x_1, x_2, x_3) \in X^*(p)$  is called maximal if  $ord(rot(x_j))$  is maximal if it is of maximal order and an element b in  $\mathbb{F}_p$  is maximal if it is of maximal order.

#### Definition

A cage is a set of maximal elements in  $X^*(p)$ .

The cage is connected. C(p) is the connected component of  $X^*(p)$  under the  $\Gamma$  action that contains the cage and gives the largest component.

Let  $C_j(a) = \{x_j = a\} \cap X^*(p)$  where  $X^*(p)$  is the solution set of  $\kappa$  in the affine space excluding zero.

- $\forall a \in \mathbb{F}_q$ , does  $\eta$  act transitively on  $C_2(a)$ ?
- ② Let  $a \neq b$ . Then  $\forall x \in C_2(a)$ , and  $y \in C_2(b)$ , does  $\exists \alpha \in Out(F_2)$  such that  $\alpha(x) = y$ .

December 8, 2017

42 / 61

## Action of $\eta$ on Conic on $C_2(0)$ with p = 17



## Action of $\eta$ on Conic on $C_2(1)$ with p = 17



## Action of $\eta$ on Conic on $C_2(2)$ with p = 17



Marvin Castellon, Cole Miller, and Cigole The Asymptotic Dynamics on Arithmetic Curves

## Action of $\eta$ on Conic on $C_2(3)$ with p = 17



## Action of $\eta$ on Conic on $C_2(4)$ with p = 17



## Action of $\eta$ on Conic on $C_2(5)$ with p = 17



## Action of $\eta$ on Conic on $C_2(6)$ with p = 17



# Action of $\eta$ on Conic on $C_2(7)$ with p = 17



## Action of $\eta$ on Conic on $C_2(8)$ with p = 17



## Action of $\eta$ on Conic on $C_2(9)$ with p = 17



## Action of $\eta$ on Conic on $C_2(10)$ with p = 17



## Action of $\eta$ on Conic on $C_2(11)$ with p = 17



## Action of $\eta$ on Conic on $C_2(12)$ with p = 17



## Action of $\eta$ on Conic on $C_2(13)$ with p = 17



## Action of $\eta$ on Conic on $C_2(14)$ with p = 17



## Action of $\eta$ on Conic on $C_2(15)$ with p = 17



## Action of $\eta$ on Conic on $C_2(16)$ with p = 17



We thank Dr. Lawton for his guidance and MEGL and GMU for presenting the opportunity to carryout this work.

Questions? Comments?

∃ ► < ∃</p>

• • • • • • • •