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Introduction
Goals

Translate problems for SAT solvers
Verify existing bounds and human proofs
Discover unknown values of Nd(n)

Motivation
Approachable discrete geometry problems
Problems are well-suited for computation
Very recent advances in the field

Definitions

Convex Position
A set of points is in convex position if none of the points is a
convex combination of the others.

A point x is a convex combination of points in {e1, ..., ek} in

Rd if x =
k∑
i=1
λiei where

k∑
i=1
λi = 1 and λi ≥ 0 for all i .

Chirotope
A chirotope realized by E is the function χ mapping a set of
ordered (d + 1)−element subsets of points in
E = {e1, e2, ..., ek} to the set {−1, 1}. For example, in 2D
space consider the points e1 = (x1, y1), e2 = (x2, y2), and
e3 = (x3, y3),

χ({e1, e2, e3}) =sgn det(ê1, ê2, ê3) where êi = (xi , yi , 1).

If χ({e1, e2, e3}) = −1, we traverse the triangle formed by
the points e1, e2, e3 clockwise. If χ({e1, e2, e3}) = 1, we
traverse the triangle formed by the points e1, e2, e3

counterclockwise.

Grassmann Plücker Relations
Let E = {e1, e2, ..., en}. The χ values of these points must
satisfy the Grassmann Plücker relations.

{−1, 1} ⊆ {χ(σ, e1, e2)χ(σ, e3, e4),−χ(σ, e1, e3)χ(σ, e2, e4), χ(σ, e1, e4)χ(σ, e2, e3)}

for all σ in
(

n
d−1

)
and {e1, e2, e3, e4} ⊆ E\σ.

This will generate
(

n
d−1

)(
n−d+1

4

)
clauses for a given n and d .

Acyclicity
We want to make sure that our set of points will not contain
any positive circuits. In d = 2, a circuit is a vector x
satisfying Ax = 0 where x has 4 nonzero entries.

For a set of 4 points, let ê1x1 + ê2x2 + ê3x3 + ê4x4 = 0.

By Cramer’s Rule, we get that −x1
x4

= det(ê4,ê2,ê3)
det(ê1,ê2,ê3),

−x2
x4

= det(ê1,ê4,ê3)
det(ê1,ê2,ê3), −

x3
x4

= det(ê1,ê2,ê4)
det(ê1,ê2,ê3).

If there is a positive circuit, χ({e1, e2, e3}) =
−χ({e1, e2, e4}) = χ({e1, e3, e4}) = −χ({e2, e3, e4}).

Esther Klein Problem

We want to find the smallest number Nd(n) where
Nd(n) points in general position in Rd has n points in
convex position. In two dimensional space, a set of
points is in general position if no 3 points are on a line,
and in three dimensional space, a set of points is in
general position if no 4 points lie on the same plane. A
set of points in convex position in two dimensional space
will form the vertices of a convex polygon, and set of
points in convex position in three dimensional space will
form the vertices a convex polytope.

Figure: Configurations of 5 points in General Position

N2(n) ≥ 2n+2 + 1, Erdös and Szekeres (1935)

N2(n) ≤ 2n+o(n), Suk (2016)

N2(n)
?
= 2n+2 + 1, Conjecture of Erdös and Szekeres

N2(4) = 5, N2(5) = 9, N2(6) = 17

N2(n) is unknown for n > 6

Conjunctive Normal Form (CNF) & Satisfiability (SAT) Solvers

Conjunctive Normal Form is a conjunction of clauses,
where each clause is disjunction of literals, each literal is
a Boolean variable or its negation, and each variable is a
chirotope. Examples of chirotpes include the sign of the
determinant and pairwise coloring. Satisfiability solvers
are NP-complete and use systematic backtracking search
algorithms. We used an open-source implementation
called Glucose, after generating clauses in Sage.

We can convert chirotopes conditions into CNF to feed
into our SAT solver. For example, the previous acyclicity
condition χ({e1, e2, e3}) = −χ({e1, e2, e4}) =
χ({e1, e3, e4}) = −χ({e2, e3, e4}) can be written as the
2 clauses below:
(χ({e1, e2, e3}) = +1 ∨ χ({e1, e2, e4}) = −1 ∨ χ({e1, e3, e4}) = +1 ∨ χ({e2, e3, e4}) = −1)

∧(χ({e1, e2, e3}) = −1 ∨ χ({e1, e2, e4}) = +1 ∨ χ({e1, e3, e4}) = −1 ∨ χ({e2, e3, e4}) = +1)

Extension to 3 Dimensions

N3(5) = 6

χ(i , j , k, l) = 1 or -1 ∀ i < j < k < l

Cyclic 3-Polytope in General Position

A Cyclic polytope, C (n, d), is a
convex polytope formed as a convex
hull of n distinct points on a rational
normal curve in Rd .

Octahedron in General Position

For 3 dimensions, and 6 vertices, it
has been shown by Bisztriczky and
Soltan that N3(5) = 6.

Exploration of Ramsey Theory Problems
Ramsey’s theorem states that there exists a least
positive integer R(r , s) for which every blue-red edge
colouring of the complete graph on R(r , s) vertices
contains a blue clique on r vertices or a red clique on s
vertices. There will be

(
R(r ,s)

r

)
and

(
R(r ,s)

s

)
possible

subsets r and s subsets, respectively. This translates
neatly to SAT solver clauses with chirotopes of pairwise
points. We have independently found that R(3, 3) = 6,
R(4, 4) = 18, and R(3, 4) = 9 and the search for
R(5, 5) is still underway.

Proof of R(3, 3) = 6 Using Clauses

False, if for every 3-element subset (i , j , k) :

(χ(i , j) = 1 ∨ χ(i , k) = 1 ∨ χ(j , k) = 1)

∧(χ(i , j) = −1 ∨ χ(i , k) = −1 ∨ χ(j , k) = −1)

Known Values for Nd(n)

Blue cells: upper bound proved by Bisztriczky and Harborth,
lower bound by Morris and Soltan (human proof).
Nd(n) = 2n − d − 1 for d + 2 ≤ n ≤ 3d

2 + 1

Red cell: found by SAT solvers, no known human proof

The Search for Cyclic Polytopes & Conclusions
˜̃Nd(n) is the search for points in general position to guarantee n

points as a cyclic d -polytope. Nd(n) ≤ ˜̃Nd(n), but ˜̃Nd(n) is also
significantly easier for a SAT solver to solve. To exclude these
polytopes, we use terms of the form

(χ({e1, ..., ed+1}) = 1 ∨ χ({e1, ..., ed , ed+2}) = 1 ∨ . . . ∨ χ({ek−d+1, ..., ek}) = 1)∧

(χ({e1, ..., ed+1}) = −1 ∨ χ({e1, ..., ed , ed+2}) = −1 ∨ . . . ∨ χ({ek−d+1, ..., ek}) = −1)

For every pair (d , k), there will be at least 2 re-orderings that
preserve the existence of positive and negative chirotope values,
so this reduces the number of clauses by at least half. This
differs from the way to exclude general convex polytopes:
excluding certain designated circuits, which involves exponential
amounts of clauses and number of points.

Future Work and Goals
Computation is still running! So far, counterexample
chirotopes have been found for 9 and 10 point sets.

However, the jury is still out on whether or not any of the
10-point chirotopes are realizable in 3D space. Finding a
realization of a chirotope is a nonlinear problem.

The counterexamples for 9 and 10 point sets were found in
around 10 minutes, but case with 11 points has been running
since November 2018.
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