Problems in Discrete Geometry Using Satisfiability Solvers

Introduction	Esther Klein Problem	
 Goals Translate problems for SAT solvers Verify existing bounds and human proofs Discover unknown values of N_d(n) Motivation Approachable discrete geometry problems Problems are well-suited for computation Very recent advances in the field 	We want to find the smallest number $N_d(n)$ where $N_d(n)$ points in general position in \mathbb{R}^d has n points in convex position. In two dimensional space, a set of points is in general position if no 3 points are on a line, and in three dimensional space, a set of points is in general position if no 4 points lie on the same plane. A set of points in convex position in two dimensional space	
Convex Position	points in convex position in three dimensional space will	• N ₂ (
• A set of points is in convex position if none of the points is a	form the vertices a convex polytope.	 N₂
convex combination of the others.	Conjunctive Normal Form (CNE) & Satisfiability (SAT) Salvers	
• A point x is a convex combination of points in $\{e_1,, e_k\}$ in	Conjunctive Normal Form (CNF) & Satisfiability (SAT) Solvers	•
\mathbb{R}^d if $x = \sum_{i=1}^k \lambda_i e_i$ where $\sum_{i=1}^k \lambda_i = 1$ and $\lambda_i \ge 0$ for all i .	Conjunctive Normal Form is a conjunction of clauses, We where each clause is disjunction of literals, each literal is interview of the second content of t	e can :o oui
Chirotope	a boolean variable or its negation, and each variable is a con- chirotopo. Examples of chirotopos include the sign of the	naitic
 A chirotope realized by E is the function χ mapping a set of ordered (d + 1)-element subsets of points in E = {e₁, e₂,, e_k} to the set {-1, 1}. For example, in 2D space consider the points e₁ = (x₁, y₁), e₂ = (x₂, y₂), and e₁ = (x₂, y₂). 	determinant and pairwise coloring. Satisfiability solvers are NP-complete and use systematic backtracking search algorithms. We used an open-source implementation called Glucose, after generating clauses in Sage.	
$e_3 = (x_3, y_3),$	Extension to 3 Dimensions	
• $\chi(\{e_1, e_2, e_3\}) = \text{sgn det}(e_1, e_2, e_3)$ where $e_i = (x_i, y_i, 1)$. • If $\chi(\{e_1, e_2, e_3\}) = -1$, we traverse the triangle formed by	$N_3(5) = 6$ Cyclic 3-Polytope in Ge	enera
the points e_1 , e_2 , e_3 , f_2 , e_3 clockwise. If $\chi(\{e_1, e_2, e_3\}) = 1$, we traverse the triangle formed by the points e_1 , e_2 , e_3 counterclockwise.		2
Grassmann Plücker Relations	4	
• Let $E = \{e_1, e_2,, e_n\}$. The χ values of these points must satisfy the Grassmann Plücker relations		
$ = \{-1, 1\} \subset \{ \chi(\sigma, e_1, e_2) \chi(\sigma, e_1, e_2) = \chi(\sigma, e_1, e_2) \chi(\sigma, e_1, e_2) \chi(\sigma, e_2, e_2) \chi(\sigma, e_1, e_2) \chi($	A Cyclic polytope, C(n	ı, d),
for all σ in $\binom{n}{1}$ and $\{e_1, e_2, e_3, e_4\} \subset E \setminus \sigma$.	convex polytope formed	d as a
• This will generate $\binom{n}{d-1}\binom{n-d+1}{d}$ clauses for a given <i>n</i> and <i>d</i> .	$\chi(i,j,k,l) = 1 \text{ or } -1 \forall i < j < k < l$	5 UT 6
Acyclicity	Evaloration of Domeon Theory Drobloms	
 We want to make sure that our set of points will not contain any positive circuits. In d = 2, a circuit is a vector x satisfying Ax = 0 where x has 4 nonzero entries. For a set of 4 points, let ê₁x₁ + ê₂x₂ + ê₃x₃ + ê₄x₄ = 0. By Cramer's Rule, we get that -x₁/x₄ = det(ê₄,ê₂,ê₃)/det(ê₁,ê₂,ê₃), -x₂ = det(ê₁,ê₄,ê₃)/det(ê₁,ê₂,ê₄). 	Ramsey's theorem states that there exists a least positive integer $R(r, s)$ for which every blue-red edge colouring of the complete graph on $R(r, s)$ vertices contains a blue clique on r vertices or a red clique on s vertices. There will be $\binom{R(r,s)}{r}$ and $\binom{R(r,s)}{s}$ possible subsets r and s subsets, respectively. This translates	
• If there is a positive circuit, $\chi(\{e_1, e_2, e_3\}) = -\chi(\{e_1, e_2, e_4\}) = \chi(\{e_1, e_2, e_4\}) = \chi(\{e_1, e_3, e_4\}) = -\chi(\{e_2, e_3, e_4\}).$	neatly to SAT solver clauses with chirotopes of pairwise points. We have independently found that $R(3,3) = 6$, $R(4,4) = 18$, and $R(3,4) = 9$ and the search for $R(5,5)$ is still underway.	F ∧()

Daniel Taylor, Julia Rima, Sumanth Ravipati with Professor Dr. Walter Morris

Mason Experimental Geometry Lab

December 10, 2018

convert chirotopes conditions into CNF to feed r SAT solver. For example, the previous acyclicity on $\chi(\{e_1, e_2, e_3\}) = -\chi(\{e_1, e_2, e_4\}) = -\chi(\{e_1, e_4, e_4\}$ $e_3, e_4\}) = -\chi(\{e_2, e_3, e_4\})$ can be written as the es below:

 $= +1 \lor \chi(\{e_1, e_2, e_4\}) = -1 \lor \chi(\{e_1, e_3, e_4\}) = +1 \lor \chi(\{e_2, e_3, e_4\}) = -1)$ $\{e_3\}) = -1 \lor \chi(\{e_1, e_2, e_4\}) = +1 \lor \chi(\{e_1, e_3, e_4\}) = -1 \lor \chi(\{e_2, e_3, e_4\}) = +1)$

Known Values for $N_d(n)$

n	3
	4
	5
	6
	7
	8
	9
	1(

For every pair (d, k), there will be at least 2 re-orderings that preserve the existence of positive and negative chirotope values, so this reduces the number of clauses by at least half. This differs from the way to exclude general convex polytopes: excluding certain designated circuits, which involves exponential amounts of clauses and number of points.

Futi	are Work and
٩	Computation
	chirotopes ha
۲	However, the
	10-point chir
	realization of
۲	The countere
	around 10 mi
	since Novem
Refe	erences
٩	Erds, P.; Szekeres, G. (19
٩	Morris, W.; Soltan, V. (20 American Mathematical S
٩	Szekeres, G.; Peters, L. (2
٩	Suk, Andrew (2016), "On

• Blue cells: upper bound proved by Bisztriczky and Harborth, lower bound by Morris and Soltan (human proof). $N_d(n) = 2n - d - 1$ for $d + 2 \le n \le \frac{3d}{2} + 1$

• Red cell: found by SAT solvers, no known human proof The Search for Cyclic Polytopes & Conclusions

 $\tilde{N}_d(n)$ is the search for points in general position to guarantee n points as a cyclic *d*-polytope. $N_d(n) \leq \tilde{N}_d(n)$, but $\tilde{N}_d(n)$ is also significantly easier for a SAT solver to solve. To exclude these polytopes, we use terms of the form

 $(\chi(\{e_1,...,e_{d+1}\}) = 1 \lor \chi(\{e_1,...,e_d,e_{d+2}\}) = 1 \lor \ldots \lor \chi(\{e_{k-d+1},...,e_k\}) = 1) \land$ $(\chi(\{e_1,...,e_{d+1}\}) = -1 \lor \chi(\{e_1,...,e_d,e_{d+2}\}) = -1 \lor \ldots \lor \chi(\{e_{k-d+1},...,e_k\}) = -1)$

Goals

is still running! So far, counterexample ave been found for 9 and 10 point sets. jury is still out on whether or not any of the otopes are realizable in 3D space. Finding a a chirotope is a nonlinear problem. examples for 9 and 10 point sets were found in inutes, but case with 11 points has been running ber 2018.

35), "A combinatorial problem in geometry", Compositio Mathematica, 2 000), "The Erds-Szekeres problem on points in convex positionA survey", Bulletin of the ociety, 37 (04) 2006), "Computer solution to the 17-point Erds-Szekeres problem", ANZIAM Journal, 48 (02)

the ErdsSzekeres convex polygon problem", J. Amer. Math. Soc. Conlon, David (2009), "A new upper bound for diagonal Ramsey numbers", Annals of Mathematics, 170 (2)