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Central Question
The central question we want to answer is whether or not the
Dedekind-Mertens property holds for a commutative ring with a
Grassmannian extension?

Preliminary Definitions/Concepts
All rings are assumed to be commutative, unital, Noetherian.
We will use R to denote a ring.

Ring - An abelian group that has a second operation that is
distributive, associative, and has an associated identity
element.

Ideal - A subgroup of a ring where if r ∈ R and x ∈ I , then
rx are elements of I .

R-Module (M) - An abelian group with an operation
· : R ×M → M . (i.e. A generalization of a vector space.)

R-Algebra - An R-module with its own associative R-bilinear
binary operation with a multiplicative identity.

More Definitions

Definition (Content)
Let R be a commutative ring and x be an indeterminate over
R . Then given an arbitrary polynomial f in R [x ], the
content of f, is defined as the ideal c(f ) of R generated by
the coefficients of f .

More generally, let S be an R algebra that is free as an R
module on a basis {eα}α∈Λ and let f =

∑n
i=1 rieαi

∈ S, then
the content is the ideal generated by (r1, r2, ..., rn) in R .

Definition (Content Algebras)
An R-algebra, R → S , is defined to be a weak content
algebra if for any f , g ∈ S , one has c(f )c(g) ⊆

√
c(fg).

An R-algebra, R → S , is defined to be a content algebra if
the Dedekind-Mertens holds to be true.

Some Background History
Gauss showed that if f , g are two polynomials in Z[x ], then
c(fg) = c(f )c(g).

Gauss’ Lemma generally does not hold unless R very closely
resembles the integers or a field.

But, Dedekind and Mertens showed in 1893 that, for any
f , g ∈ R [x ] and for all R , there exists a natural number n
such that c(f )nc(g) = c(f )n−1c(fg).

In other words, Dedekind-Mertens property is generalized for
a polynomial extension of any commutative ring.

Some more recent history
Northcott (1959) wrote a paper that generalized a
theorem on the contents of polynomials which
includes a framework on approaching content
formulas.

Huneke and Heinzer (1998) also discovered another
way to find n in regards to the Dedekind-Mertens
property.

Epstein and Shapiro (2014) also extended the
notion of a content formula to power series rings,
showing that R → R [[x ]] is a content algebra
whenever R is Noetherian [Theorem 2.6 pg 5].

Grassmannian Extension
We define the Grassmannian, Gr(k, n), as the
space which parameterizes all k-dimensional linear
subspaces of an n-dimensional vector space.

The first unknown example we are looking at is
R [Gr(2, 4)] .

In our research, we want to create a similar function
from R [Gr(2, 4)], using R [a...f ]/ab − cd + ef to
ideals of R and see if the Dedekind-Mertens
property still holds.

We use R [a, b, c, d , e, f ]/ab − cd + ef as it is
isomorphic to R [Gr(2, 4)].

Visualizing a Grassmannian
The picture to the left shows a representation of
Gr(1, 3).

In this case, we can represent Gr(1, 3) as lines
represented by the origin and a point on the unit
sphere.

Technical Approach

Initial Approach
An initial experiment in Macaulay2 was done by
Professor Epstein that looked at the problem in a
general approach. However, it would end up stalling
at n = 4 with no answer.

Due to the nature of our input, we suspect that our
input led to some exponential calculation while
calculating the Gröbner basis for our ideals which
led us to examine Gröbner basis algorithms.

Gröbner Basis Algorithms
Buchberger’s Algorithm is the most known
algorithm for calculating Gröbner Basis and is
implemented in many computer algebra systems
such as Macaulay2.

Unfortunately, it is generally inefficient.

However, the F4 algorithm (2002) was created in
order to calculate Gröbner basis faster, but there
are limited implementations in other computer
algebra systems that we examined.

Computer Algebra Systems (CAS)
We examined several CAS: Macaulay2, Magma,
SageMath, SymPy, and CoCoa

Unforunately, none of these systems would help
with our general approach due to various reasons.

Magma would end up stalling in calculating the
product of our ideals, while SymPy had limited
documentation and little support with gröbner basis
algorithms.

SageMath and CoCoa had similar issues with
constructing our Grassmannian ring.

Some Success
While the general approach was too
computationally expensive, we narrowed our scope
and worked with more specfic rings such as
R = k[x , y , z ], where k is any field.

The Dedekind-Mertens property did hold when
using this ring as our coefficients, but it should be
noted that this only gives us more insight on the
question rather than a complete answer.

Proof Analysis of Northcott’s Paper
We also tried to do proof analysis on Northcott’s paper to
see if we could approach our problem in a similar way.
However, his paper does not easily extend to our situation as
our Grassmannian extension fails to be a semi-group
extension which Northcott uses.

Northcott showed extensions like R [t2, t5] are Content
R-Algebras

Future Work
Ultimately, we have a few directions that we can look
towards. One direction would be to keep trying to modify
our problem in a more specific manner and thus requiring
less computations than in the general case. We have had
some success in this case, and this path may be needed to
gain more insight on our problem.

Another direction is to implement our own algorithms in
order to solve our problems. To be more specific, we can use
Macaulay2 for most of more basic calculations (e.g.
constructing our rings and notation) and implement our own
algorithms where Macaulay2 is not as efficient (e.g.
calculating the Gröbner basis).
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