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Generalizing to Manifolds

Heat Equation in Rn

I Heat equation in Rn:

∂u(x , t)

∂t
= −c2

n∑
i=1

∂2u(x , t)

∂t2
.

I Laplacian in Rn is

∆(u) =
n∑

i=1

∂2u(x , t)

∂t2
.

I Heat equation can be expressed as:

∂u(x , t)

∂t
= −∆u(x , t).
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Generalizing to Manifolds

Examples of Manifolds

I Manifold is a topological space that is “Locally Euclidean”.
I Examples:

I Rn

I A sphere of any dimension
I Smooth curves and surfaces in Rn

I One can define derivatives of functions on a manifold.

C∞(M) = {f : M → R : f is infinitely differentiable.}

Orton Babb Aneesh Malhothra Ryan Vaughn Advised by Dr. Tyrus BerryVisualizing Geometric Flows: First Semester



The Heat Equation
Heat Equation on Data

Classical Solution to Heat Equation
Geometric Flows

Heat Equation in Rn

Generalizing to Manifolds

Heat Equation on a Manifold

I Heat equation on a Manifold

∂u(x , t)

∂t
= −c2∆u(x , t).

I Laplacian: ∆ : C∞(M)→ C∞(M).

I Important properties:

I ∆ is a linear operator acting on the infinite dimensional vector
space C∞(M).

I An eigenfunction f is a function for which ∆f = λf

I The eigenfunctions of ∆ form a basis for L2(M) which
contains C∞(M).
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Overview

I Solutions to the Heat Equation on M can be computed
by computing the eigenfunctions of ∆. (Details Later)

I Our project:

1. Approximate a manifold M with a finite set X of data
“sampled” from a manifold M.

2. Form a “discrete Laplacian” L which acts on functions on the
finite data. The operator L provably approximates ∆ as we
sample more data.

3. Compute the eigenvectors of L and compute the solutions to
the heat equation on the data using the eigenvectors of L.
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Approximating the Laplacian on Data

I Let X = {x1, ..., xN} in Rn. Construct a complete graph with
vertex set X .

I Weight each edge {xi , xj} of the graph with weight

di ,j = e
−||xi−xj ||

2

δ2

I δ is adjustable parameter (example).

I Let K be the matrix whose entrees are di ,j . Let D be the
diagonal matrix whose diagonal entrees are the row sums of K .

I “Discrete Laplacian” L = D − K .
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A Closer Look at L

I If L is an N × N matrix, it is a linear map that takes a vector
f of length N to a vector of length N.

I Vectors of length N thus should “approximate” functions,
since ∆ acts on functions.

I If f is a function on M, f̄ is f restricted to the set of data.

I Represent f̄ as a vector:

f̄ =

 f (x1)
...

f (xN)
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Example: S1

I On a circle, the Laplacian is given by

∆ =
∂2

∂θ2

I The eigenfunctions of ∆ are given by

cos (nθ + φ) .

I Here’s an example of L computing on 50 data points sampled
from S1
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Example: 50 data points on S1
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Example S1: Eigenvector Decomposition L = UΛU>

=

U Λ U>
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Example S1: Matrix of Eigenvectors, U
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Example S1: Eigenvectors vs. θ
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Example S1: Connecting the dots
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Solving the Classical Heat Equation

Let u(x , t) be a solution to the Heat Equation. Since the
eigenfunctions {φi}∞i=1 of ∆ form a basis for L2(M), we may write:

u(x , t) =
∞∑
i=1

ci (t)φi (x)

Plugging into the heat equation yields:

∂
∞∑
i=1

ci (t)φi (x)

∂t
= ∆

( ∞∑
i=1

ci (t)φi (x)

)
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Solving the Classical Heat Equation

Partial derivatives and the Laplacian are Linear (and continuous):

∞∑
i=1

∂ci (t)

∂t
φi (x) =

∞∑
i=1

ci (t)∆φi (x)

∞∑
i=1

∂ci (t)

∂t
φi (x) =

∞∑
i=1

ci (t)λiφi (x)

Comparing coefficients, we get:

∂ci
∂t

= −ci (t)λi

for all i ∈ N
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Solving the Classical Heat Equation

By inspection, this yields coefficients:

ci (t) = ci (0)e−λi t

So solutions look like:

u(x , t) =
∞∑
i=1

ci (0)e−λi tφi (x)

Notice that e−λi t decays faster as λi become larger. So finding the
smallest eigenvalues of ∆ will yield more significant terms in the
solution.
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Example: Heat flow on S1 as function of θ
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Example: Heat flow on S2

Example: Heat flow on S1 shown on the data
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Writing it in the eigenbasis
Example: Heat flow on S1

Example: Heat flow on S2

Example on S2: Intrinsic (left) Embedding (right)
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Geometric Flows

I Heat Flow: Distribution of heat changes, manifold is fixed

I Geometric Flow: Apply the heat flow to the manifold

I As the embedding evolves, the manifold changes!

I Must recompute the Laplacian after each small time step
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