### Visualizing Geometric Flows: First Semester

Orton Babb Aneesh Malhothra Ryan Vaughn

Advised by Dr. Tyrus Berry

December 11, 2017

## Introduction



・ロン ・四と ・ヨン ・ヨン

æ

#### The Heat Equation Heat Equation in $\mathbb{R}^n$ Generalizing to Manifolds

#### Heat Equation on Data

Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

#### Classical Solution to Heat Equation

Writing it in the eigenbasis Example: Heat flow on  $S^1$ Example: Heat flow on  $S^2$ 

#### Geometric Flows

(4) (5) (4) (5) (4)

Heat Equation in  $\mathbb{R}^n$ Generalizing to Manifolds

#### Heat Equation in $\mathbb{R}^n$

• Heat equation in  $\mathbb{R}^n$ :

$$\frac{\partial u(x,t)}{\partial t} = -c^2 \sum_{i=1}^n \frac{\partial^2 u(x,t)}{\partial t^2}.$$

• Laplacian in  $\mathbb{R}^n$  is

$$\Delta(u) = \sum_{i=1}^{n} \frac{\partial^2 u(x,t)}{\partial t^2}.$$

Heat equation can be expressed as:

$$\frac{\partial u(x,t)}{\partial t} = -\Delta u(x,t).$$

A (10) A (10) A (10) A

æ

Heat Equation in  $\mathbb{R}^n$ Generalizing to Manifolds

## Examples of Manifolds

- Manifold is a topological space that is "Locally Euclidean".
- Examples:
  - $\triangleright \mathbb{R}^n$
  - A sphere of any dimension
  - Smooth curves and surfaces in  $\mathbb{R}^n$
- One can define derivatives of functions on a manifold.

$$C^{\infty}(M) = \{f : M \to \mathbb{R} : f \text{ is infinitely differentiable.}\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Heat Equation in  $\mathbb{R}^n$ Generalizing to Manifolds

## Heat Equation on a Manifold

Heat equation on a Manifold

$$\frac{\partial u(x,t)}{\partial t} = -c^2 \Delta u(x,t).$$

- Laplacian:  $\Delta : C^{\infty}(M) \to C^{\infty}(M)$ .
- Important properties:
- ► ∆ is a linear operator acting on the infinite dimensional vector space C<sup>∞</sup>(M).
- An eigenfunction f is a function for which  $\Delta f = \lambda f$
- ► The eigenfunctions of ∆ form a basis for L<sup>2</sup>(M) which contains C<sup>∞</sup>(M).

Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

イロト イポト イヨト イヨト

### Overview

- Solutions to the Heat Equation on *M* can be computed by computing the eigenfunctions of Δ. (Details Later)
- Our project:
  - 1. Approximate a manifold M with a finite set X of data "sampled" from a manifold M.
  - 2. Form a "discrete Laplacian" L which acts on functions on the finite data. The operator L provably approximates  $\Delta$  as we sample more data.
  - 3. Compute the eigenvectors of L and compute the solutions to the heat equation on the data using the eigenvectors of L.

Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

소리가 소문가 소문가 소문가

## Approximating the Laplacian on Data

- Let X = {x<sub>1</sub>,..., x<sub>N</sub>} in ℝ<sup>n</sup>. Construct a complete graph with vertex set X.
- ▶ Weight each edge {*x<sub>i</sub>*, *x<sub>j</sub>*} of the graph with weight

$$d_{i,j} = e^{\frac{-||x_i - x_j||^2}{\delta^2}}$$

- $\delta$  is adjustable parameter (example).
- Let K be the matrix whose entrees are d<sub>i,j</sub>. Let D be the diagonal matrix whose diagonal entrees are the row sums of K.

• "Discrete Laplacian" 
$$L = D - K$$
.

Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

イロト イポト イヨト イヨト

## A Closer Look at L

- If L is an  $N \times N$  matrix, it is a linear map that takes a vector  $\overline{f}$  of length N to a vector of length N.
- Vectors of length N thus should "approximate" functions, since Δ acts on functions.
- If f is a function on M,  $\overline{f}$  is f restricted to the set of data.
- Represent  $\overline{f}$  as a vector:

$$\bar{f} = \begin{bmatrix} f(x_1) \\ \vdots \\ f(x_N) \end{bmatrix}$$

Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

イロト イポト イヨト イヨト



On a circle, the Laplacian is given by

$$\Delta = \frac{\partial^2}{\partial \theta^2}$$

• The eigenfunctions of  $\Delta$  are given by

$$\cos\left(n\theta+\phi\right).$$

 Here's an example of L computing on 50 data points sampled from S<sup>1</sup>

Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

A (10) > (10)

< ⊒⇒

### Example: 50 data points on $S^1$



Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

#### Example: L matrix for $S^1$



Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

## Example $S^1$ : Eigenvector Decomposition $L = U \Lambda U^{\top}$



Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

## Example $S^1$ : Matrix of Eigenvectors, U



Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

## Example $S^1$ : Eigenvectors on Data



Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

▲ □ ► ▲ □ ►

\* 臣

## Example $S^1$ : Eigenvectors vs. $\theta$



Learning the Laplacian Operator Example: Approximating  $\Delta$  on  $S^1$ 

イロン イヨン イヨン イヨン

Э

## Example $S^1$ : Connecting the dots



Writing it in the eigenbasis Example: Heat flow on  $S^1$ Example: Heat flow on  $S^2$ 

向下 イヨト イヨト

### Solving the Classical Heat Equation

Let u(x, t) be a solution to the Heat Equation. Since the eigenfunctions  $\{\phi_i\}_{i=1}^{\infty}$  of  $\Delta$  form a basis for  $L^2(M)$ , we may write:

$$u(x,t) = \sum_{i=1}^{\infty} c_i(t)\phi_i(x)$$

Plugging into the heat equation yields:

$$rac{\partial\sum\limits_{i=1}^{\infty}c_i(t)\phi_i(x)}{\partial t}=\Delta\left(\sum\limits_{i=1}^{\infty}c_i(t)\phi_i(x)
ight)$$

Writing it in the eigenbasis Example: Heat flow on  $S^1$ Example: Heat flow on  $S^2$ 

・ 同下 ・ ヨト ・ ヨト

### Solving the Classical Heat Equation

Partial derivatives and the Laplacian are Linear (and continuous):

$$\sum_{i=1}^{\infty} \frac{\partial c_i(t)}{\partial t} \phi_i(x) = \sum_{i=1}^{\infty} c_i(t) \Delta \phi_i(x)$$

$$\sum_{i=1}^{\infty}rac{\partial c_i(t)}{\partial t}\phi_i(x)=\sum_{i=1}^{\infty}c_i(t)\lambda_i\phi_i(x)$$

Comparing coefficients, we get:

$$\frac{\partial c_i}{\partial t} = -c_i(t)\lambda_i$$

for all  $i \in \mathbb{N}$ 

Writing it in the eigenbasis Example: Heat flow on  $S^1$ Example: Heat flow on  $S^2$ 

- 4 同 6 4 日 6 4 日 6

## Solving the Classical Heat Equation

By inspection, this yields coefficients:

$$c_i(t) = c_i(0)e^{-\lambda_i t}$$

So solutions look like:

$$u(x,t) = \sum_{i=1}^{\infty} c_i(0) e^{-\lambda_i t} \phi_i(x)$$

Notice that  $e^{-\lambda_i t}$  decays faster as  $\lambda_i$  become larger. So finding the smallest eigenvalues of  $\Delta$  will yield more significant terms in the solution.

Writing it in the eigenbasis Example: Heat flow on  $S^1$ Example: Heat flow on  $S^2$ 

æ

## Example: Heat flow on $S^1$ as function of $\theta$

Writing it in the eigenbasis Example: Heat flow on  $S^1$ Example: Heat flow on  $S^2$ 

3

## Example: Heat flow on $S^1$ shown on the data

Writing it in the eigenbasis Example: Heat flow on  $S^1$ Example: Heat flow on  $S^2$ 

소리가 소문가 소문가 소문가

æ

# Example on $S^2$ : Intrinsic (left) Embedding (right)

### Geometric Flows

- Heat Flow: Distribution of heat changes, manifold is fixed
- Geometric Flow: Apply the heat flow to the manifold
- As the embedding evolves, the manifold changes!
- Must recompute the Laplacian after each small time step

イロト イポト イヨト イヨト

#### Geometric Flow on Ellipse

Orton Babb Aneesh Malhothra Ryan Vaughn Advised by Dr. Visualizing Geometric Flows: First Semester

・ロト ・回ト ・ヨト ・ヨト

Э