Applications of Diffusion Maps Geometric Flows, Resampling and Dimensionality Reduction

Orton Babb Aneesh Malhotra Advised by Dr. Tyrus Berry

MEGL Symposium, Spring 2018

Outline

Geometric Flows

Sampling from a Manifold \mathcal{M} Constructing the Normalized Discrete Laplacian on a Manifold Solving the Heat Equation on a Manifold Running a Geometric Heat Flow

Resampling

Recovering Points from the Normalized Kernel Normalizing the Distance to the K-Nearest Neighbors Nyström extensions

Dimensionality Reduction

Gradient Descent Reconstruction

Outline

Geometric Flows

Sampling from a Manifold \mathcal{M} Constructing the Normalized Discrete Laplacian on a Manifold Solving the Heat Equation on a Manifold Running a Geometric Heat Flow

Resampling

Recovering Points from the Normalized Kernel Normalizing the Distance to the K-Nearest Neighbors Nyström extensions

Dimensionality Reduction Gradient Descent Reconstruction

Laplacian on Manifolds

• Laplacian in Euclidean space: $\Delta f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}$

- Laplacian on a circle: $\Delta f = \frac{d^2 f}{d\theta^2}$
- ► In generaly, determined by the Riemannian metric, g:

$$\Delta f = \frac{1}{\sqrt{|g|}} \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(g^{ij} \sqrt{|g|} \frac{\partial f}{\partial x_j} \right)$$

- Laplacian is hard to construct but very useful
- Eigenfunctions are a basis for function space on the manifold
- Defines the heat equation on the manifold $\frac{\partial f}{\partial t} = \Delta f$

Estimating the Laplacian with Diffusion Maps

► Given a set of of N data living in ℝⁿ, we can define a kernel matrix to be

$$\mathcal{K}_{ij} = \exp{rac{-||x_i - x_j||^2}{\epsilon}}.$$

If we let D be the diagonal matrix whose entrees are the row sums of K, the graph laplacian is given by

$$L = D - K$$

- Diffusion Maps paper shows that L approximates Δ
- In the limit of infinite data, $L
 ightarrow \Delta$

Example S^1 : Kernel Matrix Represents a Weighted Graph

Visualization of a weighted graph with points sampled from a segment on the circle

Example S^1 : Eigenfunctions of the Laplacian as Eigenvectors of L

I G L

Southar plate of ((0, +))N

Example S^1 : Eigenvector Decomposition $L = U \Lambda U^{\top}$

Solving the Heat Equation on a Manifold

- In the limit of infinite data, $L \rightarrow \Delta$
- With an expression for the laplacian, we can solve the heat equation on a manifold, which is discretized by a set of data points.
- Heat equation can be expressed as:

$$\frac{\partial u(x,t)}{\partial t} = -\Delta u(x,t).$$

• Discrete solution $\vec{u}(t)_i = u(x_i, t)$:

$$\vec{u}(t+\tau) pprox \vec{u}(t) - \tau L \vec{u}(t)$$

• We replaced the time derivative and Δ with discretizations.

Example S^1 : Heat flow as function of θ

M

Example S^1 : Heat flow shown on the data

M

Geometric Flows

- Geometric Flow: Apply the heat flow to the manifold
- ► Each coordinate of our embedding is a function on the manifold F = (f₁, f₂, ..., f_n) : M → ℝⁿ
- Apply heat flow to each coordinate independently
- As the embedding evolves, the manifold changes!
- As the manifold changes, the Laplacian changes!
- Must recompute the Laplacian after each small time step

Geometric Flow on Ellipse

Issues

 As the flow progresses, we eventually get numerical singularities in the kernel matrix

Issues

The circle should be a steady state solution of the flow

Issues

The circle should be a steady state solution of the flow

- After many steps, the symmetry breaks in the data points
- We think this is the cause of the instability
- Solution is to 'resample' the points to maintain symmetry

Outline

Geometric Flows

Sampling from a Manifold \mathcal{M} Constructing the Normalized Discrete Laplacian on a Manifold Solving the Heat Equation on a Manifold Running a Geometric Heat Flow

Resampling

Recovering Points from the Normalized Kernel Normalizing the Distance to the K-Nearest Neighbors Nyström extensions

Dimensionality Reduction Gradient Descent Reconstruction

Recovering Points from the Normalized Kernel

- 1. Build the distance/kernel matrix
- 2. Perform normaliziation
- 3. Apply inverse to retrieve distance matrix from K_X
- 4. Perform MDS to recover center version of the points

K-Nearest Neighbors Normalization

D

D'

sort(D)

Ds

Normalizing Distorts the Shape

Extending the Eigenfunction Basis I

- The Laplacian $\Delta_{\mathcal{M}}$ can be recovered from data
- It has eigenfunctions ϕ_i such that $\Delta_M \phi_i = \lambda_i \phi_i$
- Suppose there is a function, $f : \mathcal{M} \to \mathbb{R}$ on this data
- Since eigenfunctions form a basis for L²(M), we can write f as

$$f(z) = \sum_{i=1}^{\infty} \underbrace{\langle f, \phi_i \rangle}_{\hat{f}} \phi_i(z)$$

Extending the Eigenfunction Basis II

- Since we can describe F in terms of its coordinate functions as F = (f₁, f₂, ..., f_n) with f_k : M → ℝ
- There are $c_{kj} = \langle f_k, \phi_j \rangle \cong \mathbf{f}^t \tilde{D} \vec{\phi_i}$ (where c is an $n \times N$ matrix)
- c may be computed in full by $c = X^t \tilde{D} \Phi$
- It remains to show how φ_i(z) can be computed for z ≠ z_i for any i

Nyström Extension

 Reconstructing the eigenfunctions of Laplacian along the entire domain.

$$\phi_j(z) pprox rac{1}{\lambda_j} \sum ilde{K}(z, z_j) \phi_j(z_i)$$

Outline

Geometric Flows

Sampling from a Manifold \mathcal{M} Constructing the Normalized Discrete Laplacian on a Manifold Solving the Heat Equation on a Manifold Running a Geometric Heat Flow

Resampling

Recovering Points from the Normalized Kernel Normalizing the Distance to the K-Nearest Neighbors Nyström extensions

Dimensionality Reduction

Gradient Descent Reconstruction

Reconstructing in Lower Dimensions

If we can reconstruct the embedding with $X = CU^t$ why not aim for an even better reconstruction that preserves the K_X ?

$$\mathcal{M} \to X \longrightarrow \qquad \begin{array}{c} \mathcal{K}_{X} = U\Lambda U^{t} \\ \downarrow \\ \tilde{X} = \tilde{C}U^{t} \\ \tilde{C} = \operatorname{argmin}_{C} \|\mathcal{K}_{X} - \mathcal{K}_{\tilde{X}}(C)\|_{fro} \end{array}$$

Gradient Descent for Minimal Embedding

Example: Pringle Chip!

 $x_i = F(\theta_i) = [cos(\theta_i), sin(\theta_i), cos(k\theta_i), sin(k\theta_i)]$ for some $k \in \mathbb{Z}$

Gradient Descent for Minimal Embedding I

- 1. Start with random guess for C
- 2. Define reconstructErr(C) = $\|K_X K_{\tilde{X}}(C)\|_{fro}$
- 3. Do $C := C \eta * \nabla reconstructErr(C)$ until ||C' C|| < TOL

Running the Gradient Descent

Progressive improvements in reconstruction for m = 2

Running the Gradient Descent

Black = Optimal Embedding Red = Gradient Descent from Random Initial Embedding

Gradient Descent for Minimal Embedding II

- 1. Solve $X = CU^t$ for $C = [c_1|c_2|...|c_m]$ as initial guess.
- 2. Define reconstructErr(C) = $\|K_X K_{\tilde{X}}(C)\|_{fro}$
- 3. Do $C := C \eta * \nabla reconstructErr(C)$ until ||C' C|| < TOL
- 4. Define reconstructErr(C) = $\|K_X K_{\tilde{X}}(C)\|_{fro} \|c_m\|$
- 5. Do $C := C \eta * \nabla reconstructErr(C)$ until ||C' C|| < TOL
- 6. Throw away the end column of C and repeat from #2

Gradient Descent for Minimal Embedding II

Summary

- The geometric heat flow failed due to breakdown of symmetry.
- The resampling methods attempt to resolve these issues.
- The reconstruction of the data, could be used and this also helps with dimensionality reduction.
- Outlook
 - Dimensionality reduction could be improved for efficiency and preventing loss of information.

For Further Reading I

R. Coifman and S. Lafon.

Diffusion maps.

Applied and Computational Harmonic Analysis, 21(1):5–30, 2006.

