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Laplacian on Manifolds

. . . 2
> Laplacian in Euclidean space: Af =37, 9F
. . 2
» Laplacian on a circle: Af = 3—92

> In generaly, determined by the Riemannian metric, g:

8= S g (Vg

i,j=1

> Laplacian is hard to construct but very useful
» Eigenfunctions are a basis for function space on the manifold
> Defines the heat equation on the manifold % = Af




Estimating the Laplacian with Diffusion Maps

> Given a set of of N data living in R”, we can define a kernel

matrix to be )
Ky = exp L =l

> If we let D be the diagonal matrix whose entrees are the row
sums of K, the graph laplacian is given by

L=D—-K

» Diffusion Maps paper shows that L approximates A
» |n the limit of infinite data, L — A



Example S': Kernel Matrix Represents a Weighted Graph

Visualization of a weighted graph with points sampled from a
segment on the circle
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Example S': Eigenfunctions of the Laplacian as
Eigenvectors of L
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Example S': Eigenvector Decomposition L = UAUT
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Solving the Heat Equation on a Manifold

» In the limit of infinite data, L — A

» With an expression for the laplacian, we can solve the heat
equation on a manifold, which is discretized by a set of data
points.

» Heat equation can be expressed as:

Ju(x, t)

5 —Au(x,t).

» Discrete solution u(t); = u(x;, t) :
u(t+7) ~ u(t) — rLi(t)

» We replaced the time derivative and A with discretizations.




Example S': Heat flow as function of ¢
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Example S': Heat flow shown on the data

Heat Flow on a Circle
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Geometric Flows

» Geometric Flow: Apply the heat flow to the manifold

» Each coordinate of our embedding is a function on the
manifold F = (A, f2,...,fn) : M — R"

> Apply heat flow to each coordinate independently
» As the embedding evolves, the manifold changes!
» As the manifold changes, the Laplacian changes!

» Must recompute the Laplacian after each small time step




Geometric Flow on Ellipse

Gepmetric Heat Elow on an Ellipse
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Issues

> As the flow progresses, we eventually get numerical
singularities in the kernel matrix
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Issues

» The circle should be a steady state solution of the flow

Geometric Flow: £t = 2.5
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Issues

> The circle should be a steady state solution of the flow

Geometric Flow: t = 1.7
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» After many steps, the symmetry breaks in the data points
> We think this is the cause of the instability
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Recovering Points from the Normalized Kernel

B

Build the distance/kernel matrix
Perform normaliziation
Apply inverse to retrieve distance matrix from Kx

Perform MDS to recover center version of the points
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K-Nearest Neighbors Normalization
D sort(D)

: :
: :

-

Dr

Ds
' DL
o5 2 E( P \(\\i///‘;
o ) - ()




Normalizing Distorts the Shape

- Original Points
- Normalized Points




Extending the Eigenfunction Basis |

v

The Laplacian A can be recovered from data
It has eigenfunctions ¢; such that Axyq¢; = A;j¢;

v

v

Suppose there is a function, f : M — R on this data

» Since eigenfunctions form a basis for L2(M), we can write f
as
f(z) = f, ¢f i\Z
(2) = 3 {F, 00 (2)

i=1 X
f



Extending the Eigenfunction Basis Il

» Since we can describe F in terms of its coordinate functions
as F =(f,f,..,fp) with f : M —- R

There are ¢ = (fi, ¢j) = ftDg; (where c is an n x N matrix)

v

» ¢ may be computed in full by ¢ = XtDo

» It remains to show how ¢;(z) can be computed for z # z; for
any i



Nystrom Extension

» Reconstructing the eigenfunctions of Laplacian along the
entire domain.

9j(2) ~ )\% > K(z.2)8i(z)
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Reconstructing in Lower Dimensions

If we can reconstruct the embedding with X = CU* why not aim
for an even better reconstruction that preserves the Kx?

M=aX — Kx = UNU?
~ \l/»-
X =CUt
C = argmin¢||Kx — K¢ (C)ll o
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Gradient Descent for Minimal Embedding

Example: Pringle Chip!
x;i = F(0;) = [cos(6;), sin(0;), cos(kb;), sin(kb;)] for some k € Z




Gradient Descent for Minimal Embedding |

1. Start with random guess for C
2. Define reconstructErr(C) = ||[Kx — K¢ (C)||fro
3. Do C := C — n x VreconstructErr(C) until ||C' — C|| < TOL



Running the Gradient Descent

000000

Progressive improvements in reconstruction for m = 2
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Running the Gradient Descent

~

Black = Optimal Embedding
Red = Gradient Descent from Random Initial Embedding



Gradient Descent for Minimal Embedding Il

ok wh =

Solve X = CU! for C = [c1|cz|...|cm] as initial guess.
Define reconstructErr(C) = |[|[Kx — K¢ (C)|l o

Do C := C — n* VreconstructErr(C) until |C' — C|| < TOL

Define reconstructErr(C) = [|[Kx — Kg¢(C)|lfollcml|

Do C := C — n * VreconstructErr(C) until ||C" — C|| < TOL

Throw away the end column of C and repeat from #2



Gradient Descent for Minimal Embedding Il

For m=4,3,2,1
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Summary

v

The geometric heat flow failed due to breakdown of symmetry.

v

The resampling methods attempt to resolve these issues.

v

The reconstruction of the data, could be used and this also
helps with dimensionality reduction.

Outlook

» Dimensionality reduction could be improved for efficiency and
preventing loss of information.

v




For Further Reading |

1 R. Coifman and S. Lafon.
Diffusion maps.
Applied and Computational Harmonic Analysis, 21(1):5-30,
2006.
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