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Laplacian on Manifolds

I Laplacian in Euclidean space: ∆f =
∑n

i=1
∂2f
∂x2i

I Laplacian on a circle: ∆f = d2f
dθ2

I In generaly, determined by the Riemannian metric, g :

∆f =
1√
|g |

n∑
i ,j=1

∂

∂xi

(
g ij
√
|g | ∂f
∂xj

)
I Laplacian is hard to construct but very useful

I Eigenfunctions are a basis for function space on the manifold

I Defines the heat equation on the manifold ∂f
∂t = ∆f



Estimating the Laplacian with Diffusion Maps

I Given a set of of N data living in Rn, we can define a kernel
matrix to be

Kij = exp
−||xi − xj ||2

ε
.

I If we let D be the diagonal matrix whose entrees are the row
sums of K , the graph laplacian is given by

L = D − K

I Diffusion Maps paper shows that L approximates ∆

I In the limit of infinite data, L→ ∆



Example S1: Kernel Matrix Represents a Weighted Graph

Visualization of a weighted graph with points sampled from a
segment on the circle



Example S1: Eigenfunctions of the Laplacian as
Eigenvectors of L

Scatter plots of {(θ, φi )}Ni=1



Example S1: Eigenvector Decomposition L = UΛU>

=

U Λ U>



Solving the Heat Equation on a Manifold

I In the limit of infinite data, L→ ∆

I With an expression for the laplacian, we can solve the heat
equation on a manifold, which is discretized by a set of data
points.

I Heat equation can be expressed as:

∂u(x , t)

∂t
= −∆u(x , t).

I Discrete solution ~u(t)i = u(xi , t) :

~u(t + τ) ≈ ~u(t)− τL~u(t)

I We replaced the time derivative and ∆ with discretizations.



Example S1: Heat flow as function of θ



Example S1: Heat flow shown on the data



Geometric Flows

I Geometric Flow: Apply the heat flow to the manifold

I Each coordinate of our embedding is a function on the
manifold F = (f1, f2, ..., fn) :M→ Rn

I Apply heat flow to each coordinate independently

I As the embedding evolves, the manifold changes!

I As the manifold changes, the Laplacian changes!

I Must recompute the Laplacian after each small time step



Geometric Flow on Ellipse



Issues

I As the flow progresses, we eventually get numerical
singularities in the kernel matrix



Issues

I The circle should be a steady state solution of the flow



Issues

I The circle should be a steady state solution of the flow

I After many steps, the symmetry breaks in the data points

I We think this is the cause of the instability

I Solution is to ‘resample’ the points to maintain symmetry
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Recovering Points from the Normalized Kernel

1. Build the distance/kernel matrix

2. Perform normaliziation

3. Apply inverse to retrieve distance matrix from KX

4. Perform MDS to recover center version of the points



K-Nearest Neighbors Normalization
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Normalizing Distorts the Shape

Original Points

Normalized Points

Normalized data set of 250 points



Extending the Eigenfunction Basis I

I The Laplacian ∆M can be recovered from data

I It has eigenfunctions φi such that ∆Mφi = λiφi
I Suppose there is a function, f :M→ R on this data

I Since eigenfunctions form a basis for L2(M), we can write f
as

f (z) =
∞∑
i=1

〈f , φi 〉︸ ︷︷ ︸
f̂

φi (z)



Extending the Eigenfunction Basis II

I Since we can describe F in terms of its coordinate functions
as F = (f1, f2, ..., fn) with fk :M→ R

I There are ckj = 〈fk , φj〉 ∼= ftD̃~φi (where c is an n × N matrix)

I c may be computed in full by c = X tD̃Φ

I It remains to show how φi (z) can be computed for z 6= zi for
any i



Nyström Extension

I Reconstructing the eigenfunctions of Laplacian along the
entire domain.

φj(z) ≈ 1

λj

∑
K̃ (z , zj)φj(zi )
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Reconstructing in Lower Dimensions

If we can reconstruct the embedding with X = CUt why not aim
for an even better reconstruction that preserves the KX ?

M→ X −→ KX = UΛUt

↓
X̃ = C̃Ut

C̃ = argminC‖KX − KX̃ (C )‖fro



Gradient Descent for Minimal Embedding

Example: Pringle Chip!

xi = F (θi ) = [cos(θi ), sin(θi ), cos(kθi ), sin(kθi )] for some k ∈ Z
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Gradient Descent for Minimal Embedding I

1. Start with random guess for C

2. Define reconstructErr(C) = ‖KX − KX̃ (C )‖fro
3. Do C := C − η ∗ ∇reconstructErr(C ) until ‖C ′ − C‖ < TOL



Running the Gradient Descent

⇒ ⇒

Progressive improvements in reconstruction for m = 2



Running the Gradient Descent

Black = Optimal Embedding
Red = Gradient Descent from Random Initial Embedding



Gradient Descent for Minimal Embedding II

1. Solve X = CUt for C = [c1|c2|...|cm] as initial guess.

2. Define reconstructErr(C) = ‖KX − KX̃ (C )‖fro
3. Do C := C − η ∗ ∇reconstructErr(C ) until ‖C ′ − C‖ < TOL

4. Define reconstructErr(C) = ‖KX − KX̃ (C )‖fro‖cm‖
5. Do C := C − η ∗ ∇reconstructErr(C ) until ‖C ′ − C‖ < TOL

6. Throw away the end column of C and repeat from #2



Gradient Descent for Minimal Embedding II

For m = 4, 3, 2, 1
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Summary

I The geometric heat flow failed due to breakdown of symmetry.

I The resampling methods attempt to resolve these issues.

I The reconstruction of the data, could be used and this also
helps with dimensionality reduction.

I Outlook
I Dimensionality reduction could be improved for efficiency and

preventing loss of information.



For Further Reading I

R. Coifman and S. Lafon.
Diffusion maps.
Applied and Computational Harmonic Analysis, 21(1):5–30,
2006.
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